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Abstract—With the widespread adoption of machine learning models, especially deep neural networks (DNNs), as an integral part of
new intelligent software, the new tools to effectively support the model engineering and debugging process have received extensive
attention. However, the existing tools only provide limited support for the training process. They are either post-training tools that fail to
detect problems timely, resulting in wasting time and resources on training buggy models, or merely collecting the training data and still
require manual analysis. In this paper, we propose AUTOTRAINER, an automated monitoring and repairing system for DNN training,
which provides real-time monitoring for the model training process and automatically repairs eight commonly seen training problems.
AUTOTRAINER monitors the training process and detects potential training problems. For any detected problem, AUTOTRAINER tries to
fix it with the built-in state-of-the-art solutions. Our experiments on six datasets and 701 models show that the problem detection
accuracy of AUTOTRAINER reaches 100% without false positives. Moreover, it fixes 98.42% of all detected problems and improves the
model accuracy by 36.42% on average.

Index Terms—Machine learning security, deep learning debugging, deep learning repairing, deep learning training
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1 INTRODUCTION

MACHINE Learning (ML) techniques that power the
intelligent components of a software system are play-

ing an increasingly significant role. The development of the
Deep Neural Network (DNN) brings software intelligence
broader prospects with its recent advances. It is estimated
that the global edge AI software market is predicted to grow
from $1460 million in 2021 to $8050 million in 2027 [2]. The
COVID-19 pandemic further accelerates the application and
deployment of Deep Learning (DL) techniques in various
fields. Google and Harvard Global Health Institute have
released improved COVID-19 Public Forecasts based on AI
techniques to provide a projection of COVID-19 cases [3].
Microsoft Azure Health Bot service helps hospitals classify
patients and answer questions about symptoms [4].

With this growing trend, DL techniques are studied
in a wide range of industries, and the DL components
powered by DNN models have become an integral part of
the software. Unfortunately, like other software programs,
DNN models also have bugs and vulnerabilities, which can
severely affect the model performance and eventually lead
to a waste of resources and security risks in the software
system. Even worse, most domain developers and experts
have limited or no knowledge of DL, leaving them unable to
effectively solve the problems in the intelligent components
of the software. This raises a great challenge for the com-
munity in debugging and repairing the DNN model and its
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development process.
To address this challenge, the researchers have devel-

oped some tools that can help the developers who are
new to the DL techniques [5–7]. For instance, MODE [5],
proposed as a novel model debugging method, identifies
the buggy neurons that bring about unexpected model
behaviors and repairs the model performance by selecting
additional training examples. These works focus on de-
tecting and repairing the models whose training has been
completed and are known as the post-training techniques.
However, these existing techniques are hardly able to au-
tomatically test and fix the model problems, and their
deployment and usage often require expert experience in
the ML techniques, which limits their value in real-world
scenarios. Furthermore, we observe in our experiments that
model training problems occur randomly during the train-
ing process (as shown in §3), and the post-training tools
cannot detect and fix model problems in a timely manner
during model training. As a result, developers have to check
the buggy model after the training is completed, which leads
to a waste of time and computing resources.

Moreover, the existing DNN frameworks have provided
limited support for detecting and monitoring the potential
model problems in the training procedure. TensorBoard [8],
which is the default debugging toolkit of the TensorFlow 1

framework, provides records and visualization for various
values during model training, such as model weights and
gradients. There are some other similar tools, such as Vis-
dom 2, Manifold 3 and PyTorch Profiler 4. These toolkits
can track and visualize metrics like model gradients and

1. https://github.com/tensorflow/tensorflow
2. https://github.com/facebookresearch/visdom
3. https://github.com/uber/manifold
4. https://pytorch.org/docs/stable/profiler
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visualize the change in the collected data during the training
with diagrams. Similar to traditional software debuggers
(e.g., Microsoft Visual Studio Debugger), these DNN de-
bugging tools can help developers understand the model
performance and training status but cannot analyze the
collected data and fix model problems.

The nature of the training problem itself makes it dif-
ficult for these debuggers to discover these problems in
time. Our previous work [1] reveals that the occurrence
of a training problem is highly random. Firstly, whether
a training problem occurs or not is random even for the
same training script. Secondly, the moment when a training
problem occurs during the model training is also random.
We provide real cases to illustrate these findings in §3.
Considering the fact that many DNN training tasks may
take days or even months, it is impractical for developers to
constantly monitor and analyze the model training data and
manually diagnose the potential problems. Additionally,
these runtime tools cannot provide automated analysis for
the massive amounts of training data, let alone apply the
solutions to repair the problems. To address the aforemen-
tioned limitations, there is an urgent need for a tool that
frees developers from manually monitoring the model train-
ing process and automatically diagnoses and fixes problems
during training, thereby increasing developer productivity
and efficiency and improving the reliability and security of
intelligent software systems.

Although our earlier work [1] provides an automatic
training problem monitoring and repairing approach, it
lacks a sufficient and comprehensive evaluation to assess
the specific repair effects of the solutions as well as support
for several other common problems, which can also severely
impact the model training performance and lead to security
risks in the DNN models. This paper presents an extended
version of our previous work [1]. Our previous work mainly
focuses on the training problems related to the backward
propagation of gradients in model training (e.g., vanishing
gradient problem). This paper extends and explores three
new training problems in forward propagation, such as the
improper output activation function problem. To effectively
repair these training problems, we propose and implement
extra repair methods and supplement the design and im-
plementation details in this paper. Moreover, we design a
new research question and supplement more experimental
models to comprehensively evaluate the effectiveness of our
system. In a nutshell, this paper presents AUTOTRAINER,
an automated monitoring and repairing system, which cur-
rently focuses on eight common training problems(i.e., van-
ishing gradient, exploding gradient, dying ReLU, oscillating
loss, slow convergence, improper output activation func-
tion, improper loss function, and abnormal data). Taking a
model and its training configuration (e.g., hyperparameter,
optimizers) as the input, AUTOTRAINER starts the training
and monitors and records training data like loss value and
gradient. During the monitoring, AUTOTRAINER conducts
regular analysis to diagnose potential training problems.
When the symptoms of any training problem are detected,
AUTOTRAINER will try to repair it with the built-in solutions
and restart the model training procedure. During the re-
training, if another problem is detected, AUTOTRAINER will
regard the old problem as resolved and attempt to repair
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Fig. 1: The Basic Steps of the Iterative Model Training Process

the new problem. If there is no problem arises during re-
training, AUTOTRAINER will consider that all problems are
resolved, and then it delivers a well-trained model with the
corresponding configuration to the user. If AUTOTRAINER
fails to solve this problem, it will notify the user with a
completed training log. Our contributions are:

• We summarize and formalize definitions for the
symptoms of eight common training problems.

• We propose a novel approach to monitor in real-
time and automatically repair eight different training
problems during model training.

• We develop a prototype system AUTOTRAINER
based on the proposed idea and evaluate it with six
public datasets and 701 models. The evaluation re-
sults demonstrate that AUTOTRAINER can effectively
detect all 506 problems for 422 buggy models and
repair 498 problems of them with a ratio of 98.42%.
On average, the test accuracy can be improved from
41.79% to 78.21% (1.87 times the original accuracy).

• Our implementation, collected models, configura-
tions, experiment results, and problem solutions are
publicly available at [9].

The rest of this paper is organized as follows. We first
introduce the background in §2 and then presents two
motivation examples of training problems in §3. The design
and implementation of AUTOTRAINER are explained in §4.
We show and analyze the experiment results in §5. Sub-
sequently, §6 discusses the limitations of AUTOTRAINER.
Then, after presenting the related work in §7, we discuss
the insight of this work in §8 and conclude in §9.

2 BACKGROUND

2.1 DNN Model Training

A DNN model is a parameterized function Fθ : X 7→ Y ,
where x ∈ X is an m−dimensional input (i.e., x ∈ Rm) and
y ∈ Y is the corresponding output label. θ represents the
weights that determine the outputs of the model F . A DNN
with n layers can be formally represented as a composite
function F = ln ◦ ln−1 ◦ · · · ◦ l1, where l represent a layer
in the model. The input layer l1 takes raw inputs and passes
them on to the subsequent layers (i.e., the hidden layers).
The following hidden layers extract the features of the input,
and the output layer ln is trained to predict the output
based on the extracted features. The output of each layer
l can be expressed as Fl = σ(θl ∗ Fl−1 + bl), where bl is the
bias values of layer l. σ, which is known as the activation
function, defines the specific output of layer l with a given
input( §2.3). The connection between two consecutive layers
l and l − 1 in the model can be represented by a set of
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matrices, which is referred to as the weight θl. The weight
matrices of each layer in the model need to be initialized
before training. After initialization, with a large set of input-
output pairs (xi, yi) given, the training process updates all
weight parameters θ of the DNN model to minimize the
differences between a predicted result Fθ(x) and the corre-
sponding ground truth label y. The loss function L(Fθ(x), y)
is used to measure this difference. Therefore, the essence of
the DNN model training is to minimize the value of L.

Specifically, training a DNN model consists of three
steps, as shown in Fig. 1. Firstly, the forward propagation step
uses the existing weight θ to predict output labels Fθ(x) for
the training samples x. Then, the loss calculation computes
the loss function value L based on predicted output and
ground truth labels. Subsequently, the backward propagation
step adjusts and updates the weight values ∆θ from the out-
put layer ln all the way back to the input layer l1, trying to
minimize the difference using an optimization method. The
optimization method is usually a gradient descent algorithm
or its variants, such as stochastic gradient descent (SGD).
The training process will repeat the above steps until the
stopping criteria are reached, which means the difference
converges to a minimum value or the maximum number of
training iterations is reached.

2.2 Gradient Descent

DNN model training leverages loss functions to quantify the
prediction ability of a DNN model and uses the gradient
descent algorithm and its variants to guide the update of
model weights. The algorithm tweaks the weights in the
opposite direction to the gradient of the loss function and
adjusts the weights to appropriate values. Specifically, each
weight has an update proportional to the partial derivative
of the loss function for the current weight. The gradients are
typically computed by automatic differentiation techniques
utilizing the chain rule. Therefore, the computation of gradi-
ents for weight has the effect of multiplying many numbers
that are from subsequent layers.

In general, the predictive ability of a DNN model is
closely related to the number of layers (also known as the
model depth). Increasing the number of layers can enable a
neural network to train on a large-scale training dataset and
effectively learn more complex mapping functions from in-
puts to outputs. However, blindly adding the model layers
can lead to abnormal gradients that negatively impact the
model training performance. Two common related training
problems are vanishing gradient and exploding gradient.

Problem 1 (Vanishing Gradient Problem). In backward propa-
gation, when the gradient is computed by multiplying many small
numbers, the gradient can be vanishingly small, especially for
layers close to the input layer. Consequently, the model weights
will hardly change and the loss function may end up with a very
large value, meaning the model will have a low accuracy after
training. Such a problem is referred to as vanishing gradient (VG).

Symptoms of VG. During the backward propagation from
the output layer to the input layer, the gradient decreases
exponentially and approaches zero in layers close to the in-
put layer. The model accuracy remains low during training.

Problem 2 (Exploding Gradient Problem). In contrast to VG,
the gradient can grow exponentially as it propagates backward.
This can lead to unexpectedly large values or even NaN values
in gradients, resulting in poor model accuracy. Such a problem is
referred to as exploding gradient (EG).

Symptoms of EG. The gradient increases exponentially
from the output layer to the input layer during backward
propagation. It can grow large or even overflow to NaN
value in the layers close to the input layer. Similar to the
vanishing gradient problem, the model accuracy is also low
during training.

2.3 Activation Function

For a given set of inputs, each neuron in DNN computes
the weighted sum and then adds a bias to the sum. Then,
an activation function processes the computed sum and
produces an output for the neuron. The activation func-
tion determines how much the input is relevant for the
following stage, guiding the network to leverage important
features and suppress irrelevant features. Common acti-
vation functions include Sigmoid, ReLU (Rectified Linear
Unit), etc. Taking the ReLU activation function as an exam-
ple, it is one of the most widely-used nonlinear activation
functions in the neural networks [10–12]. For input x, the
output of the ReLU activation function can be represented
as ReLU(x) = max{x, 0}. Existing work [13] has demon-
strated its excellent training effect, which can improve
model sparsity and achieve better convergence in training.
However, ReLU has its own limitations, among which dying
ReLU is the most common and serious one.

The activation function has a significant impact on the
ability and performance of a DNN model, and different
activation functions can be used in different parts of the
model. In general, the hidden layers and the output layers
in the model use different activation functions. The former
is designed to process the features or data from the previous
layer and pass the output to the following layer, while the
latter performs the prediction task of the model based on the
output of the hidden layer. Therefore, the activation function
of the hidden layer often uses nonlinear activation functions
(e.g., ReLU) to introduce the non-linearity into the model
and get access to the rich hypothesis space [14]. The output
activation function and the loss function, on the other hand,
depend on model tasks [15]. With the advancement of DL
security, researchers have designed customized loss func-
tions and the like to accomplish some domain-specific tasks,
including improving model robustness and fairness [16, 17].

We introduce three related training problems here,
namely dying ReLU and improper output activation function
and improper loss function, respectively.

Problem 3 (Dying ReLU Problem). When a ReLU neuron
receives a non-positive input, it will output zero, making the
neuron inactive. In such cases, the neuron is very likely to remain
inactive forever since a gradient-based optimization algorithm will
not tweak the weights of an inactive neuron. Consequently, these
neurons cannot be leveraged to distinguish between the prediction
and ground truth, and if there are many such neurons, it may end
up with a large part of the neurons in the network contributing
nothing to the prediction task. This is known as dying ReLU (DR).
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Symptoms of Dying ReLU. When training a DNN with
ReLU as the activation function of the hidden layers, the
gradients of a large percentage of the neurons are zero and
the model accuracy is low during training.

Problem 4 (Improper Output Activation Function Problem).
The activation function of the output layer doesn’t match the
prediction task of the DNN model. As a result, the DNN model
cannot perform the prediction task correctly based on the extracted
features from the hidden layers, and the training may end up with
a stalled high loss value and low accuracy. Such a problem is
referred to as improper output activation function (IO).

Symptoms of IO. The activation function of the output layer
in the DNN model does not match the prediction task, and
the model accuracy remains low during training.

Problem 5 (Improper Loss Function Problem). Similar to the
IO problem, the loss function doesn’t match the prediction task of
the DNN model, resulting in low accuracy during training. We
refer to such a problem as improper loss function (IL).

Symptoms of IL. The loss function of the DNN model does
not match its prediction task, and the model accuracy is low
during training.

2.4 Convergence
The training goal is to reduce the loss value to a minimum.
To determine the point of convergence, there are usually
two conditions. One is that the training time has reached
the maximum allowed iteration (defined by the user). The
other one is that the training accuracy has reached the
desired values. Some training cases may end up with a set
of low accuracy models even after the maximal number of
training iterations. The model often struggles to learn valu-
able features from the training data in these cases, resulting
in the training not converging properly. They are usually
caused by three problems: oscillating loss, slow convergence,
and abnormal data.

Problem 6 (Oscillating Loss Problem). It is inevitable for the
loss value to go up and down during the training procedure.
However, large changes in the loss value occur without the
decreasing trend, and the training may not converge for a very
long time, which should be enough for training the model. Such a
problem is referred to as oscillating loss (OL).

Symptoms of OL. The training accuracy keeps fluctuating
in a large range for a long time.

Problem 7 (Slow Convergence Problem). The loss value is
high and decreases so slowly that no significant accuracy improve-
ment has been made, and the model training may end up with
low accuracy when the maximal number of training iterations is
finished. We refer to such a problem as slow convergence (SC).

Symptoms of SC. The training accuracy holds a low value
for a long time and the loss is decreasing slowly.

Problem 8 (Abnormal Data Problem). The training data is not
preprocessed or normalized, resulting in too large values or even
NaN values, which will affect the output prediction and weight
updating of the model. It is difficult for the model to process the
input or learn features from the training data. We refer to such a
problem as abnormal data (AD).

Symptoms of AD. The output values of the layers near the
input layer can become large or even NaN value during the
forward propagation, and the model accuracy remains low.

3 IDENTIFYING DNN PROBLEMS DURING TRAIN-
ING

To our knowledge, there is no existing tool that provides
real-time support for users to identify the aforementioned
DNN problems during training. The TensorBoard Debug-
ger [8] in TensorFlow and the PyTorch Hooks [18] in PyTorch
can help users inspect the changes of program variables
(e.g., loss value, gradient) after training. However, analyzing
these recorded data and fixing the potential training prob-
lems in the models requires expert knowledge. Even though
many of these problems are common in DNN training, and
their symptoms and solutions have been studied and ana-
lyzed, identifying the problem and finding an appropriate
solution is far from a piece of cake. In this paper, we propose
AUTOTRAINER, a DNN training tool that can automatically
monitor DNN internal values (i.e., neuron outputs and
gradients), loss values, and training accuracy values during
the training procedure and inspect possible problems. If
a problem is identified, AUTOTRAINER will try to fix it
automatically. AUTOTRAINER is designed as an automated
real-time training monitoring and fixing tool due to the
random nature of the training problems. Specifically, even
for the same training script, whether a training problem
occurs or not is random during training. When a training
problem occurs, which iteration it occurs and affects is also
random. In the following sections, we provide two cases
to illustrate the randomness of the training problem and
motivate our design.

3.1 Training problem occurrence is highly random

When we train a model with the same configuration and
training data multiple times, it is random whether the
training problem occurs during a single training procedure.
The reason for this phenomenon lies in the random values
used in the model training process, such as random weight
initialization and stochastic gradient descent. Influenced by
random values, during repeated training, a training problem
can arise in several cases and severely affect model accuracy.
But in other cases, the training problem doesn’t occur, and
the model achieves high accuracy after training.

Here we provide a case with dying ReLU problem in
training to illustrate the randomness of the training problem
discussed above. We build a DNN model with 34 layers
(650,000 parameters) and use ReLU as the activation func-
tion of the hidden layers. For the training configuration,
we choose MNIST [19] handwritten digit dataset (50,000
training and 10,000 testing samples) as the training dataset,
Adam [20] as the optimizer, and set the learning rate to
0.001, which is recommended by TensorFlow. Following the
prior work [21], we set the maximal number of the training
epochs to 50 (i.e., over 80,000 training steps) to show the
impact of dead neurons on model training. The detailed con-
figuration and model are shown in our repository [9]. Subse-
quently, We train the model with this training configuration
100 times. Fig. 2(a) shows the distribution of the occurrence
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Fig. 2: Problems Occurrence and Time of Occurrence are Random

of the dying ReLU (DR) problem in the repeated training. In
80% of these training trials, we can observe the DR problem
that severely affects the training performance and leads
to the average accuracy of 11.35%. For the remaining 20%
of training attempts, the model accuracy increases quickly,
and the weights update continuously during training. They
achieve an average accuracy of 85.34% when the training is
completed. Fig. 2(c) provides a intuitive comparison. Blue,
orange, and green separately represent the accuracy curves
of training that the DR problem occurred, didn’t occur,
and is repaired by AUTOTRAINER. Note that both of the
curves are from the same training script and model. We
can observe that when the DR problem occurs, the training
stops converging in the first few epochs, and the update of
the model weights stalls, resulting in an accuracy of only
11%. In contrast, the training without DR problem finally
achieves over 95% accuracy. The difference between the two
training results indicates that whether a problem occurs or
not is random. In addition, we also use AUTOTRAINER to
repair the DR problem in this case, and the model accuracy
is improved to 93.23% after repair.

3.2 The time when a training problem occurs is random

Similar to the randomness of problem occurrence, the time
when a problem actually occurs is also random during
training. We illustrate this phenomenon with an example of
a DNN model that suffers from the oscillating loss (OL) prob-
lem. This model contains 20 layers and also uses ReLU as the
activation function of the hidden layers. The corresponding
training configuration also uses the Adam optimizer with
a learning rate of 0.001 in training Following the prior
work [21, 22], we set the maximal number of the training
epoch to 50 to observe the OL problem. More Details are
in our repository [9]. The distribution of the stages (epoch
number) when the OL problem occurs is shown in Fig. 2(b).
We can observe that, for 29% of the cases, the OL problem is
not triggered, and they reach an average accuracy of 90.47%.
But in half of the cases, the problem occurs in the first
ten epochs, and the percentages of detecting the problem
in other stages are separately 9%, 8%, and 4%. This result
demonstrates at which iteration or stage of the training
a particular problem occurs is random. Fig. 2(d) shows a
comparison of the training where OL problems occurred at
different stages. Four cases are shown from top to bottom:
OL did not occur, occurred on 0-9 and on 10-19 epochs,
and is repaired by AUTOTRAINER. In the first case where
OL does not occur, the accuracy curve is relatively stable
and finally achieved 90.65%. Comparing the second and
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third cases, we can see that the earlier the training problem
occurs, the greater the fluctuation of the subsequent training
curve, and the more severe the training is affected.

For training problems that cannot be predicted whether
and when they occur, the real-time training monitor in
AUTOTRAINER can acutely detect training problems. For
this model, AUTOTRAINER can detect the problem at the
early stage (i.e., before 20 epochs out of 50) in the wide
majority of cases (i.e., more than 80% of the cases where the
problem occurs). In contrast, existing post-training methods
do not collect real-time data, making them unable to provide
timely detection during the training. After detection, our
system attempts to resolve the problem with four built-in
solutions (See §4.4). After the repair of AUTOTRAINER, the
OL problem in this model has been successfully alleviated,
and the training finally achieves an accuracy of 97.65%, as
shown in the fourth case of Fig. 2(d).

4 SYSTEM DESIGN

Fig. 3 gives the overarching design of our system, which
consists of two cooperating components, namely the prob-
lem detection module (left) and the automatic repair mod-
ule (right). The solid line with arrows in this figure rep-
resents the control flow in AUTOTRAINER, and the dashed
line with arrows represents the data flow. The whole system
starts by training a model with an initial training configura-
tion and using the problem detection module to monitor the
training iterations. During this process, the monitor records
the training data, and the problem recognizer analyzes the
recorded data and detects the potential training problems.
When a problem is detected, the system launches the auto-
matic repair module and attempts to fix the problem with
built-in solutions. Subsequently, AUTOTRAINER retrains the
repaired model with new training settings and continues to
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monitor the new training until it can be completed without
any problems occurring (fixed) or the detected problems
that cannot be resolved (failed).

AUTOTRAINER takes the training configurations (e.g.,
loss function, optimizer, and learning rate), the original
model, and user preferences as inputs. The user preferences
are configurable parameters for AUTOTRAINER, which in-
clude the thresholds to judge the problems, preferred repair
solutions, and so on. AUTOTRAINER has a set of default
values for them, and the user can adjust them according
to their needs. Details will be presented in §4.2. The prob-
lem detection module monitors the training information
like loss value, gradients, and layer outputs. During this,
the problem recognizer is triggered periodically, analyzing
the recorded data to recognize symptoms and determining
whether a training problem exists in the model training. If a
problem is detected, AUTOTRAINER will use the automatic
repair module to address it. Otherwise, the training monitor
will output the trained model with its training configura-
tions to the user, as shown in the blue output in Fig. 3.

For each problem, AUTOTRAINER has a few built-in so-
lutions to fix them. However, one solution may not work in
all cases. If there is a detected problem that is the same as be-
fore, it means the applied solution cannot solve the problem
for this particular case. Hence, the solution scheduler will
retrieve the next one, apply it, and restart training. If a new
problem is detected from the repaired training, the solution
scheduler will save the current model into a checkpoint for
subsequent attempts to select the corresponding solutions to
continue solving the new model. AUTOTRAINER has a de-
fault order for the problem solutions, designed to prioritize
the optimal performing fixes to solve the training problems
as quickly as possible. The order of solutions can also be
reorganized by users. If none of the solutions can fix the
problem, the solution scheduler will report a failed case with
the whole training log to the users, as the yellow part shown
in Fig. 3. It is worth noting that for failed repairs of the new
problem detected from a repaired training, AUTOTRAINER
will select the model with the highest accuracy as a part of
outputs based on the repair history and checkpoints.

4.1 Training Monitor

The training monitor starts a training procedure and records
data which is used to recognize symptoms and retrain the
model when a problem is detected. The recorded data can
be divided into two categories, namely the static data and
the runtime data.

The static data is the data that does not change during
the whole model training process. It is generally determined
and stored at the beginning of model training. The static
data includes:

• Model definition including layers and their configu-
rations (e.g., kernel sizes in convolutional layers).

• Optimization method definition and its parameters.
• Hyper-parameters and other necessary variables

used in training, such as the batch size and learning
rate.

The runtime data refers to the data that the model will
continuously generate and update during training, such as

the gradients and the training accuracy. The runtime data
includes:

• Training accuracy and loss values.
• Calculated gradients for each neuron.
• Outputs and weights for each model layer.

Note that the data of each training procedure will be
recorded separately and can be queried by the user.

4.2 Problem Recognizer
The problem recognizer regularly analyzes the recorded
data to recognize training problems. The symptoms lever-
aged to detect problems are formalized and shown in Ta-
ble 1. The first column lists the training problems, and
the second column specifies the symptoms involving gra-
dient and training accuracy, etc. If the depicted condition is
met, AUTOTRAINER regards the corresponding symptom as
observed. When all symptoms of a problem are observed
during training, AUTOTRAINER will determine that the
problem exists and then terminate training. The last column
presents the built-in solutions in AUTOTRAINER.
• VG. The symptoms of the VG problem can be formalized
as two conditions. Firstly, there has not been a trained
model whose accuracy is good enough to terminate the
training (max(Acc) ≤ Θ). This check is by default enabled
and checked by all existing DNN training platforms already.
If there is such a model, the training should be terminated.
Secondly, in the recent α1 training iterations, the gradient
has been dropped from layer to layer in the backward
propagation, and the gradient becomes very small (smaller
than a threshold value β2). To measure the change and value
of gradients, we use the l2-norm, which is borrowed from
existing literature in the AI research community [23–25].
• EG. The definition of the symptoms of EG is very similar
to that of VG, except that the gradient is increasing from
layer to layer in backward propagation, or it has already
become NaN values in some layers (meaning that it cannot
propagate back to the input layer already).
• DR. Dying ReLU means that there has been a set of
neurons whose gradients have been 0 in the recent few
iterations ([k − α3, k]), and this set is large and makes up
a large portion of the entire DNN (more than a threshold
value γ) while model accuracy is still low.
• OL. Intuitively, the symptom of an OL problem is that
there have been a lot of oscillating loss values from the
start till now. To measure if there are oscillating loss values,
we first extract two lists of loss values, A and B, which
represent the maximum optimal and minimal optimum loss
values (in time order), respectively. Then, we calculate the
degree of oscillation by computing the differences of a
consecutive pair of elements in A and B. If the difference
is larger than η, we think this is a significant oscillation, and
when such oscillation occurs very frequently, we think there
is an OL problem in the model training.
• SC. By definition, SC means the accuracy of trained mod-
els is growing slowly. To detect this problem, AUTOTRAINER
checks the training accuracy change for the past iterations.
If the change remains small during training, it indicates that
the training has been trapped into a locally optimal point,
and the training process has failed to improve it. Based on
this, AUTOTRAINER determines that the SC problem occurs.
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TABLE 1: Problem Symptoms and Repair Solution Candidates

Training Problem Symptom Solution

Vanishing Gradient [23–25] Gradient: ∀i ∈ [k − α1, k],

∥∥∥∥Gi
l2

∥∥∥∥∥∥∥∥Gi
l3

∥∥∥∥ ...
∥∥∥∥Gi

ln−1

∥∥∥∥∥∥∥∥Gi
ln

∥∥∥∥ ≤ β1

∧∥∥∥Gi
l2

∥∥∥ ≤ β2 S1: Adding Batch Normalization Layers
S2: Substituting Activation Functions

Accuracy: max(Acc) ≤ Θ

Exploding Gradient [23–25] Gradient: ∀i ∈ [k − α2, k],

∥∥∥∥Gi
l2

∥∥∥∥∥∥∥∥Gi
l3

∥∥∥∥ ...
∥∥∥∥Gi

ln−1

∥∥∥∥∥∥∥∥Gi
ln

∥∥∥∥ ≥ β3

∨
∃j ∈ N,Gi

j = NaN
S1: Adding Batch Normalization Layers
S2: Substituting Activation Functions
S3: Adding Gradient ClipAccuracy: max(Acc) ≤ Θ

Dying ReLU [21] Gradient: ∀i ∈ [k − α3, k],
|{j∈N|,Gi

j=0}|
|N| ≥ γ

S1: Adding Batch Normalization Layers
S2: Substituting Activation Functions
S4: Substituting InitializerAccuracy: max(Acc) ≤ Θ

Oscillating Loss [22] Accuracy: |{i∈[1,min(|A|,|B|)]|A[i]−B[i]≥ζ}|
k ≥ η

S4: Substituting Initializer
S5: Adjusting Batch Sizes
S6: Adjusting Learning Rate
S7: Substituting Optimizer

Slow Convergence [26] Accuracy: ∀i ∈ [1, k], |Acc[i] − Acc[i − 1]| ≤ δ
S4: Substituting Initializer
S6: Adjusting Learning Rate
S7: Substituting Optimizer

Improper Output Activation
Function [15]

Activation Function: σn /∈ ActSet(T ((x, y), Ok)) S2: Substituting Activation FunctionsAccuracy: max(Acc) ≤ Θ

Improper Loss
Function [15]

Loss Function:L /∈ LossSet(T ((x, y), Ok)) S8: Substituting Loss FunctionAccuracy: max(Acc) ≤ Θ

Abnormal Data [27] Layer Output: ∀i ∈ [k − α4, k], ∃j ∈ n,
∥∥∥Oi

lj

∥∥∥ ≥ ω
∨

∃m ∈ N,Oi
m = NaN S9: Processing Input Data

Accuracy: max(Acc) ≤ Θ

1 Gb
a , the gradient of layer a in iteration

b
2 n, the number of layers of a DNN
3 N , all neurons of a DNN
4 k, the current training iteration
5 α1/α2/α3 , thresholds for itera-

tions

6 β1/β2/β3 , thresholds for gradients
7 Θ, the training accuracy threshold
8 γ, the threshold for the percentage of

neurons with 0 gradients
9 δ, the threshold for accuracy difference

10 ζ, the threshold for the difference of
maximum and minimum optimal

11 η, the threshold for the percentage of
times of large loss fluctuation

12 Acc, accuracy arry for each iteration
13 max, the maximum function
14 A/B, arrays of maximum/minimum

optimal

15 Ob
a , the output of layer a in the last

batch of iteration b
16 ActSet/LossSet, recommended

activation and loss function sets
17 T , the model task from analysis

• IO. The improper output activation function problem
means that the model uses the inappropriate activation
function in the output layer to make the prediction which
leads to a low accuracy during training. Therefore, to de-
termine this problem, two symptoms need to be present.
Firstly, the activation function σn of the output layer doesn’t
match the model prediction task T , which can be rep-
resented as σn /∈ ActSet(T ), where ActSet(T ) indicates
the output activation functions recommended by existing
work [15] for the given task. For example, a model uses
the ReLU activation function in the last layer to make
predictions for multi-classification tasks but not the Softmax
activation function recommended by existing work. The
second condition is that the model accuracy is not high
enough to terminate the training (i.e., max(Acc) ≤ Θ).
• IL. Similar to the IO problem, there are also two symptoms
of improper loss function problem. Firstly, the loss function
L does not match the prediction task of the model T , which
can be represented asL /∈ LossSet(T ), where LossSet(T )
indicates the recommended loss functions [15]. Secondly, the
model accuracy remains low in training.
• AD. In some cases, the training data is not properly
preprocessed or normalized [27]. For example, the values
of the CIFAR-10 dataset generally need to be normalized to
[−1, 1] and not [0, 255]. Anomalous values (e.g., NaN and
Inf) also need to be cleaned and processed before being
inputted into the model. When the model uses abnormal
input data during training, the training process may be dif-
ficult to converge, and the loss function cannot be reduced.
Therefore, the symptoms of the AD problem have two parts.
First of all, there are abnormal values in layer outputs of the
model, which is manifested in that the maximum output

value of a certain layer exceeds the given threshold ω or
it has already become NaN values in some layers. Here
we use the l∞-norm to measure the maximum value of
layer outputs. Secondly, the model accuracy remains low
in training.

Note that although it seems like it is possible to detect
and fix the forward propagation problems (i.e., IL, IO, and
AD) before training, this strategy is unreliable. On the one
hand, for customized loss functions, data, etc., it is difficult
to design a method to determine whether there are anoma-
lous before training starts. With the application of DL, re-
searchers proposed a large number of domain-specific tasks
that require customized data, loss function, and activation
function, for example, improving model fairness [16, 28] and
robustness [17], and knowledge distillation [29]. It is difficult
to analyze the customized implementations in advance and
determine whether they are suitable for the target training
tasks. On the other hand, deep learning models are complex
systems with millions of parameters, and it is difficult to
intuitively predict whether the training results converge or
not before training. To accurately identify these training
problems, the problem recognizer first analyzes and de-
termines the current model’s task (e.g., multi-classification)
based on the model’s training data and intermediate out-
puts of forward propagation, and then evaluates to identify
the training problem based on the model loss, activation
function, and accuracy, etc.

4.3 Solution Scheduler
The main role of the solution scheduler is to pick one
solution to fix the problem and restart the training pro-
cedure. For the same problem, it will try each possible
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solution one by one based on the default order if users
do not specify preferred orders. If one solution can fix the
problem, the scheduler will not be triggered by the same
problem. Otherwise, it will try a new solution. If none of
these solutions can fix it, AUTOTRAINER fails to resolve this
problem and will report this to the user to determine what
to do next. Note that the model training may suffer from
multiple problems. These training problems have different
symptoms and exposure stages that do not occur at the
same time. AUTOTRAINER attempts to solve the detected
problems one by one in the order of exposure.

All solutions in AUTOTRAINER have been summarized
from existing work and evaluated in large-scale experi-
ments, and they are ordered based on the experimental
results. This ordering is designed to prioritize the most
effective repair strategy to resolve the training problem as
quickly as possible. The experiments in §5.5 verify the ef-
fectiveness of the built-in repair methods in AUTOTRAINER.
Moreover, AUTOTRAINER provides the interface for users to
customize their repair strategies and sequence.

4.4 Existing Solutions

The existing research has proposed some methods to allevi-
ate or solve the training problem. Unfortunately, there is no
silver bullet and one solution cannot be guaranteed to work
for all cases. As shown in the third column in the Table 1,
for each problem, AUTOTRAINER collects a few possible
solutions that have proved the effectiveness in the prior
study and our evaluation. AUTOTRAINER has implemented
a total of 9 repair methods, as shown in the following:
• S1: Adding Batch Normalization Layers. Batch normal-
ization is a method that normalizes the neuron values of a
layer by re-centering and re-scaling them. This helps elimi-
nate the unexpected gradient and neuron activation values.
Specifically, the normalization will squeeze the values into
a specific range, and as such, the gradient updates will not
vanish or explode during the backward propagation and
reduce the possibility of getting inactive neurons [30, 31].
We follow the prior work [30] and implement our solution
to add batch normalization before activation function layers.
• S2: Substituting Activation Functions. As aforemen-
tioned, ReLU is a commonly adopted activation function.
The gradient of ReLU activation is 1 when the input is
greater than 0, meaning the gradient will remain the same
without decreasing or increasing dramatically with the
proper optimizer and learning rate. Hence, substituting the
current activation function of the hidden layers with ReLU
and its variants (e.g., SELU [32], LeakyReLU [33]) can miti-
gate both the vanishing gradient problem and the exploding
gradient problem. For the IO problem, AUTOTRAINER will
substitute the activation function of the output layer based
on the suggestions of existing work [15]. For example, for
a binary classification task and a model using the ReLU
activation function in the output layer, AUTOTRAINER will
select the Sigmoid activation to replace it after detecting the
improper output activation problem.
• S3: Adding Gradient Clipping. Gradient clipping clips
gradient values outside of a specified range, which essen-
tially restricts the update of the weight value to a limited
region. By removing obviously large gradient values, it can

alleviate the exploding gradient in the models [15, 34, 35].
Following the prior work [34, 35], AUTOTRAINER clips the
gradient of each layer to [−10, 10].
• S4: Substituting Initializers. Initializers give initial val-
ues to the model weights and set a starting point for the
optimization process. Thus, inappropriate initialization can
severely affect the mode training performance and may lead
to several training problems. Lu et al. [36] propose that the
popular initialization schemes like He Initialization [37] suf-
fer from the Dying ReLU problem. Xavier initialization [38]
is proposed to solve the oscillating loss and slow conver-
gence problem by initiating the weight values to a proper
range. Thus, AUTOTRAINER also tries to substitute the used
initializers when a model encounters the Dying ReLU, slow
convergence, or oscillating loss problems.
• S5: Adjusting Batch Sizes. Batch size is the number of
training samples used in one iteration to estimate the layer
outputs and gradients. A too large batch size may cause the
loss value to fall into a poor local minimum, while a too
small batch size might lead to oscillating loss [39, 40]. Exist-
ing work [34, 35, 40] has performed analysis and evaluation
on the choice of batch size for DNN training. Following the
prior work [40, 40, 41]. AUTOTRAINER first initializes the
batch size to 32. When the oscillating loss problem occurs,
AUTOTRAINER doubles the batch size until it reaches 256.
• S6: Adjusting Learning Rates. The learning rate deter-
mines the amount of change to the model in each up-
date (i.e., each backward propagation). If the learning rate is
too large, the weights are likely to have a fluctuating update
and the loss value will oscillate and even increase over
training epochs [15]. In this case, decreasing the learning
rate can be helpful to tackle the oscillating loss problem
during training. Generally, a small learning rate allows
the model to learn more optimal or even globally optimal
weights with the risk of taking a very long time to finish
the training. At one extreme, the training may never con-
verge to a low loss value even after the maximal number
of training epochs. Therefore, one candidate solution for
the slow convergence problem is increasing the learning
rate [15]. In AUTOTRAINER, the values for learning rates
depend on the different optimizers they use. We follow the
suggestions made by their original authors (e.g., Adam [20])
and existing empirical evidence [41, 42]. Specifically, we
choose 0.01 for SGD-based optimizers, and 0.001 for Adam
and other adaptive optimizers. If the slow convergence
problem still exists, AUTOTRAINER increases it 10 times;
and if the oscillating loss problem still exists, AUTOTRAINER
decreases it by a factor of 10.
• S7: Substituting Optimizers. Optimizers are algorithms
used to update weights to reduce the loss value. An op-
timizer can behave differently in different scenarios. Practi-
cally, a substitution of an optimizer can help address various
training problems. Stochastic Gradient Descent (SGD) [43]
computes an estimated gradient on a randomly selected
small subset of data samples instead of computing an actual
gradient on the entire dataset. Based on the rationale, the
weights are updated more frequently in SGD which can
speed up the convergence but may cause fluctuations in
the loss value. Momentum [44] is a method introduced
to speed up the SGD optimizer and alleviate loss oscil-
lations. It works by adding a fraction of the update in
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the past timesteps to the current update. Following prior
work, we set the momentum value to 0.9, which means the
weights will update based on 90% of the previous gradient
and 10% of the new gradient. Adaptive Moment Estima-
tion (Adam) [20] is another widely adopted optimizer that
uses momentum and adaptive learning rates that gradually
decrease the learning rate in training. It can prevent the
training from missing the local minimum and accelerate the
convergence. In a nutshell, AUTOTRAINER uses optimizers
with momentum to alleviate the oscillating loss problem
and randomly selects a different optimizer with a default
learning rate to alleviate the slow convergence problem.
• S8: Substituting Loss Function. During training, the
value of the loss function reflects the error between the
predicted results and the ground truth results, guiding the
optimizer to update the model weights in the direction of
reducing the error. Choosing an appropriate loss function
can efficiently guide the training process and speed up the
convergence. The existing work points out that the loss
function value is generally related to the model output unit
and the model task [15]. For example, the prediction tasks
of binary classification generally use the Sigmoid activation
function in the output layer and cooperate with the binary
cross-entropy loss function. When the improper loss func-
tion problem occurs, AUTOTRAINER will select a new loss
function according to the model task.
• S9: Processing Input Data. The abnormal input values
can severely affect the training process and may even cause
the unexpected termination of training [27]. In addition, the
too large values in the raw input data may cause abnormal
changes in gradients during model training, resulting in de-
creasing the convergence speed of training. For the training
suffering from the abnormal data problem, AUTOTRAINER
will normalize the input data and remove outliers to im-
prove the training performance. In addition, the interface
of AUTOTRAINER makes it easy to update data processing
methods according to the state-of-the-art work in the field
of data science [45, 46].

5 EVALUATION

The prototype of AUTOTRAINER is implemented on top of
TensorFlow 2.3.0 [47] and also supports the models built in
the TensorFlow 2.1.0 version. In the evaluation, we aim to
answer the following research questions:
RQ1: Can AUTOTRAINER effectively detect and repair train-
ing problems?
RQ2: Is the overhead of AUTOTRAINER acceptable in de-
tecting and repairing training problems?
RQ3: How do different configurable parameters in
AUTOTRAINER affect the performance?
RQ4: Can the built-in solutions in AUTOTRAINER effectively
repair training problems?

5.1 Setup
We performed our experiments on six popular datasets:
Circle [48], Blob [49], MNIST [19], CIFAR-10 [50], IMDB [51]
and Reuters [52]. Circle and Blob are two datasets from
SKLearn [53] for classification tasks, which contain two and
three categories, respectively. MNIST is a gray-scale image

dataset used for handwritten digit recognition. CIFAR-10 is
a widely used colored image dataset used for object recog-
nition and contains 10 categories. IMDB is a movie review
dataset for sentiment analysis with two classes. Reuters is a
newswire dataset for document classification.

In total, we collected 701 models and their training
configurations with various DNN model structures (CNN,
RNN and fully connected (FC) layers only) for these six
datasets. The model information is shown as follows.

• Only FC layer models are trained on Blob and Circle
datasets. Their number of layers ranges from 7 to 19,
with a minimum of 6 FC layers and the number of
trainable parameters ranges from 141 to 513.

• CNN models are trained and evaluated on CIFAR-10
and MNIST models. They contain 2 or more convolu-
tional layers and 3 or more FC layers and the largest
one has 28 layers and 544,810 trainable parameters.
There is also a number of the CNN model that uses
the LeNet-5 architecture [54] to illustrate the negative
impact of the training problem.

• RNN models consist of 2 or more LSTM or RNN
layers and 3 or more FC layers. The largest one
contains 21 layers and 5,692,354 parameters and the
smallest one has 3 layers and 3,362,478 parameters.

Among them, 422 of them have suffered from at least
one training problem and the rest are benign models. Some
of the models are collected and reproduced from reported
buggy models on GitHub, StackOverflow, existing papers,
and personal blogs [39, 55–57]. The other models are gath-
ered from machine learning experts within our organization.
Moreover, we have manually verified whether these models
exhibit training problems. Specifically, two co-authors with
expertise in SE and AI security are invited to verify the
collected models. They record the training logs to verify
whether the models have the same abnormal behavior
and training problems described by the authors (e.g., NaN
loss [55]). For those models that lack problem descriptions,
we use the symptoms and thresholds described in §4.2
for evaluation and verification. According to our statistics,
verifying a single model takes about 10 minutes, and each
participant takes about four weeks to complete all verifica-
tion. Subsequently, following the prior work [58, 59], we use
Cohen’s Kappa statistic to measure the level of agreement
(inter-rater reliability) of the annotation results of two par-
ticipants, which is 0.92 (i.e., “strong agreement” [60]). For
inconsistency, we invite a third co-author to moderate the
discussion and conduct verification until we obtain results
that are recognized by all three participants. To ensure
the reliability of the experiment results, all models and
their training configurations and all experiment results are
available in our repository [9].

If not specified, all experiments in this section are con-
ducted on a server with Intel(R) Xeon E5-2620 2.1GHz 8-core
processors, 130 GB of RAM and an NVIDIA TITAN V GPU
running Ubuntu 20.04 as the operating system.

5.2 Effectiveness of AUTOTRAINER

Experiment Design: To evaluate the effectiveness of
AUTOTRAINER, we train the 701 collected models with
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TABLE 2: The Overall Problem Repaired Results

Dataset VG EG DR SC OL IO IL AD TotalS2 S1 S2 S1 S3 S2 S1 S4 S7 S6 S4 S7 S6 S2 S8 S9
Blob 10 2 10 0 0 4 3 1 31 0 0 4 0 28 13 20 126

Circle 9 1 9 1 0 6 3 0 48 1 0 7 1 9 9 8 112
CIFAR-10 7 0 7 1 0 2 1 0 27 1 0 2 0 13 7 10 78

MNIST 6 2 10 0 0 4 0 0 20 1 0 7 1 7 13 9 80
Reuters 0 4 6 0 0 - - - 19 7 0 0 4 6 15 - 61
IMDB 5 3 5 0 1 - - - 9 3 0 0 4 3 8 - 41
Total 37 12 47 2 1 16 7 1 154 13 0 20 10 66 65 47 498

Repaired 49 50 24 167 30 66 65 47 498
Failed 4 4 0 0 0 0 0 0 8
Total 53 54 24 167 30 66 65 47 506

their training configurations with AUTOTRAINER to observe
whether AUTOTRAINER can effectively detect and solve the
training problems. Due to the randomness in performing
these experiments, we run the training five times to ensure
that the problems have been exposed, and the average prob-
lem discovery rate is 95.50%. To evaluate the effectiveness of
AUTOTRAINER, we start two parallel training processes for
the same model. The two training processes share the usage
of the same random number including the initialization
weights. They also share the same set of training hyper-
parameters and optimization methods. During training, we
collect training logs including gradients, loss values, etc.
Results: For all 422 buggy models, we detect a total of
506 training problems as some models have more than
one. We display partial results in Table 3. The first two
columns separately list the datasets and the model status
with the corresponding number of models. The “Repaired”
indicates that a model has been successfully repaired by
AUTOTRAINER and there is no training problem in it now,
and “Failed” indicates that the problem still exists even
after AUTOTRAINER has tried all built-in solutions. We use
the “Normal” to denote models without training problems.
For ease of exposition and analysis below, the third column
of Table 3 gives the serial number (from 1 to 701) of all
models in the experiment, and the fourth column shows the
number of detected problems of each model. The following
columns represent the accuracy, training time, and memory
consumption of the corresponding model. To avoid the
potential bias and shortcomings of a single accuracy metric
on multi-classification tasks, we also record the precision
and recall in experiments. Due to space limitations, we only
include the recall and precision improvement for models af-
ter repair in Table 3. The full table and detailed results are in
our repository [9]. The columns “Orig.” and “AT” separately
show the results for the original model training and repaired
model training. “Ratio” gives the ratio between the values of
a repaired model and the corresponding original model, and
the column “Improve” shows the absolute improvement
in accuracy, recall, and precision that our system achieves.
The cells in purple separately correspond to the models
with the highest accuracy improvement, maximum training
overhead, and maximum memory overhead, while the cells
in grey separately correspond to the ones with the least
accuracy improvement, minimum training overhead, and
minimum memory overhead. In addition, the red cells show
the averaged results of the repaired training on six datasets.

To evaluate the repair effects, we also calculated the
number of problems that are fixed by individual solutions
and the accuracy improvement, as shown in Table 2, Fig. 4,
and Table 4. The columns in Table 2 present the problem

[-6.00%, 0%): 11 models

[0%, 30%): 158 models

[30%, 50%): 122 models

[50%, 70%): 67 models

38.16%

29.47%

16.18%

13.53%
2.66%

≥ 70%: 56 models

Fig. 4: Accuracy Change After Model Training Repair.

and corresponding solutions whose orders are their de-
fault priority used for repairing in AUTOTRAINER. Each
number in the top half of the table denotes the number
of problems that are repaired successfully by the corre-
sponding solution. The bottom half summarizes the number
of problems of different statuses. Moreover, the pie chart
in Fig. 4 demonstrates the distribution of change ranges
in accuracy with corresponding numbers of models. The
columns “#Repaired” and “Avg. Improvement” in Table 4
separately show the number of repaired training problems
and averaged accuracy improvement on different datasets.
The columns “Backward” and “Forward” indicate those
training problems that occur during backward propagation,
and those that occur during forward propagation and loss
calculation, respectively.
Analysis. The experiment results demonstrate the effective-
ness of AUTOTRAINER. Firstly, AUTOTRAINER can effec-
tively detect the defined training problems with a 100%
success rate on all the 701 model training, and none of the
benign training is misclassified as problematic. Secondly,
AUTOTRAINER can effectively repair the buggy training
procedures. After successful repair, it can improve the accu-
racy by 36.42%, and its maximum accuracy improvement in
the experiment is 90.17%. In addition, the successful repair
on the six datasets resulted in increments of 36.27% and
44.52% on recall and precision. The repair results shown
in these two metrics are similar to the repair results in
terms of accuracy, further demonstrating the effectiveness
of AUTOTRAINER in fixing problems and improving model
performance across the board without introducing potential
bias. Notice that when EG occurs, it may result in NaN val-
ues in the model weights, leading to NaN output results for
all inputs. In such cases, we do not measure the prediction
accuracy and directly report them as “n.a.” in Table 3.

From Table 2, we observe that AUTOTRAINER is able
to respectively repair 92.45% and 92.59% of VG and EG
problems, and it fixes all the DR, SC, OL, IO, IL, and
AD problems in buggy training trials. Table 2 and Table 4
demonstrate that AUTOTRAINER is capable of handling
different types of datasets, model problems, and model ar-
chitectures and achieves significant repair effects. Regarding
SC and OL, we find that the first two solutions (i.e., S7 and
S6) can effectively solve all the problems we encountered
in the evaluation, so the other solutions are not used in the
experiments. Therefore, we conduct an evaluation in §5.5 to
evaluate the actual effect of each repair solution.

Fig. 4 shows the distribution of accuracy improvement
after repairing. Specifically, there are 56 repaired models
that improve the accuracy by at least 70%, and over 50%
of the models improve accuracy by more than 30%. Com-
bined with the average accuracy of repaired models, we can
observe that a significant number of the models have a very
low original accuracy of around 10%. We manually analyze
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TABLE 3: Overall Results of AUTOTRAINER

Accuracy Train Time Average MemoryDataset Status No. #Prob. Orig.(%) AT(%) Imp.(%) Ratio
Recall

Imp.(%)
Precision
Imp.(%) Orig.(s) AT(s) Ratio Orig.(MB) AT(MB) Ratio

1 1 10.33 83.00 72.67 8.03 81.33 83.85 6.19 11.45 1.85 1239.07 1239.25 1.00
2 2 75.00 69.00 -6.00 0.92 73.33 27.28 13.34 125.11 9.38 1320.49 1319.74 1.00
3 3 30.67 83.33 52.67 2.72 5.81 50.02 15.86 586.63 36.98 1564.95 1565.12 1.00
4 1 40.33 78.67 38.33 1.95 25.00 35.83 17.99 24.03 1.34 1550.91 1554.17 1.00
5 1 59.00 80.00 21.00 1.36 54.67 -7.21 13.41 23.75 1.77 1157.88 1174.61 1.01
6 1 50.33 82.67 32.33 1.64 -56.67 56.94 12.99 30.99 2.39 1282.06 1258.63 0.98

Repaired:
92

Avg. 1.25 52.68 79.51 26.83 1.51 24.83 36.97 13.49 39.47 2.92 1377.56 1378.2 1.00
93 1 33.67 33.67 0.00 1 0.00 0.00 16.03 109.56 6.84 1576.94 1574.19 1.00
94 1 33.67 33.67 0.00 1 0.00 0.00 6.89 86.64 12.57 1574.7 1573.95 1.00Failed:

2 Avg. 1 33.67 33.67 0.00 1 0.00 0.00 11.46 98.1 8.56 1575.82 1574.07 1.00
95 - 50.67 - - - - - 15.61 17.74 1.14 1505.91 1486.04 0.99
96 - 45.67 - - - - - 15.71 16.94 1.08 1514.26 1509.71 1.00

Blob

Normal:
53 Avg. - 77.18 - - - - - 16.41 18.08 1.1 1477.09 1476.88 1.00

148 1 0.00 86.33 86.33 n.a. 86.09 86.67 18 28.44 1.58 1320.03 1321.28 1.00
149 1 87.33 82.67 -4.67 0.95 63.58 -20.24 22.98 71.85 3.13 1325.53 1326.22 1.00
150 2 49.67 78.00 28.33 1.57 -5.94 43.62 3.5 57.18 16.35 1332.55 1332.32 1.00
151 1 54.33 85.00 30.67 1.56 25.17 40.76 60.88 74.27 1.22 1358.89 1358.89 1.00
152 1 56.67 67.67 11.00 1.19 19.87 6.59 10.43 20.55 1.97 1161.57 1177.07 1.01
153 1 50.00 85.67 35.67 1.71 31.13 35.72 22.96 41.97 1.83 1281.22 1258.49 0.98

Repaired:
98

Avg. 1.11 50.24 81.14 30.90 1.61 25.02 30.91 24.89 57.27 2.3 1313.57 1313.61 1.00
246 - 86.67 - - - - - 16.2 16.94 1.05 1305.43 1302.58 1.00
247 - 68.00 - - - - - 29.14 30.53 1.05 1313.31 1306.58 0.99

Circle

Normal:
39 Avg. - 79.60 - - - 0.00 0.00 25.27 30.68 1.21 1269 1334.09 1.05

285 1 8.25 70.29 62.04 8.52 51.10 73.68 56.69 85.3 1.5 3778.36 3661.16 0.97
286 1 70.56 68.91 -1.65 0.98 -10.44 -0.74 218.11 345.07 1.58 7641.48 9068.34 1.19
287 2 10.00 71.73 61.73 7.17 67.56 76.64 73.48 1180.53 16.07 4477.29 3774.16 0.84
288 1 10.02 66.12 56.10 6.6 38.76 67.48 108.6 98.34 0.91 7576.53 9463.46 1.25
289 1 10.00 43.96 33.96 4.40 20.12 66.60 187.96 248.83 1.32 4694.23 6400.61 1.36
290 1 10.00 67.43 57.43 6.74 54.95 77.93 214.44 295.44 1.38 3589.40 2817.81 0.79

Repaired:
73

Avg. 1.08 18.52 63.33 44.80 3.42 42.86 61.85 201.6 389.2 1.93 4972.65 4912.53 0.99
358 1 10.00 10.00 0.00 1 0.00 0.00 382.79 492.6 1.29 3777.13 3777.36 1.00Failed:

2 359 2 10.00 10.00 0.00 1 0.00 0.00 186.52 419.96 2.25 6316.59 6301.32 1.00
360 - 65.37 - - - - - 342.88 319.32 0.93 4452.31 3749.12 0.84
361 - 56.56 - - - - - 236.45 244.89 1.04 3749.78 3753.79 1.00

CIFAR
-10

Normal:
35 Avg. - 63.48 - - - - - 145.63 146.39 1.01 3946.77 3826.03 0.97

395 1 8.89 99.06 90.17 11.14 98.75 98.84 28.69 36.99 1.29 3523.83 4080.47 1.16
396 1 99.16 99.29 0.13 1 -0.08 -0.11 119.67 166.53 1.39 3588.25 3174.85 0.88
397 2 9.80 98.99 89.19 10.1 98.86 99.11 365.55 2294.69 6.28 3283.42 3283.67 1.00
398 1 9.80 98.73 88.93 10.07 98.46 98.88 99.99 101.78 1.02 3265.32 2916.77 0.89
399 1 98.39 99.18 0.79 1.01 0.11 0.04 34.67 48.84 1.41 2930.73 3814.31 1.30
400 1 97.56 98.82 1.26 1.01 -2.98 -1.59 40.31 76.37 1.89 3996.26 3342.43 0.84

Repaired:
65

Avg. 1.08 43.55 98.82 55.26 2.27 63.71 60.10 179.19 358.84 2 3228.46 3204.64 0.99
460 - 98.79 - - - - - 173.85 173.47 1 3203.96 3198.19 1.00
461 - 86.54 - - - - - 135.93 136.42 1 3168.69 2925.68 0.92

MNIST

Normal:
80 Avg. - 96.94 - - - - - 227.69 227.94 1 3258.77 3198.95 0.98

540 2 0.53 66.38 65.85 124.25 62.33 74.23 308.96 946.55 3.06 4857.65 4879.49 1.00
541 1 59.75 59.71 -0.04 1 -0.22 -0.65 928.16 1834.58 1.98 2534.15 2575.85 1.02
542 1 47.91 50.22 2.32 1.05 9.75 -12.50 1278.41 4778.25 3.74 2312.99 2360.14 1.02
543 1 0.53 62.91 62.38 117.75 56.54 80.03 1316.38 1321 1 1859.9 1869.22 1.01
544 1 50.49 67.59 17.10 1.34 15.72 -8.54 220.45 350.06 1.59 3684.76 4059.10 1.10
545 1 0.53 57.52 56.99 107.67 48.17 86.70 2591.11 4363.19 1.68 1823.66 1758.23 0.96

Repaired:
51

Avg. 1.02 29.44 61.09 31.65 2.08 27.07 28.89 813.64 1682.75 2.07 3621.92 3655.3 1.01
Failed: 1 591 1 36.02 36.02 0.00 1 8.68 -1.64 1484 1460.37 0.98 1881.61 1820.14 0.97

592 - 37.13 - - - - - 1466.05 1510.32 1.03 1912.03 1927.08 1.01
593 - 36.15 - - - - - 1400.59 1471.97 1.05 1901.38 1930.53 1.02

Reuters

Normal:
41 Avg. - 51.08 - - - - - 1001.36 1022.2 1.02 3071.84 3103.06 1.01

633 1 0.00 87.08 87.08 n.a. 87.41 87.41 3982.2 8876.97 2.23 1998.46 2069.23 1.04
634 1 85.51 83.64 -1.87 0.98 -2.90 -2.90 1446.27 2060.99 1.43 2264.55 2348.56 1.04
635 1 49.33 86.03 36.70 1.74 37.88 37.88 670.69 6925.99 10.33 2256.18 2342.93 1.04
636 1 49.12 85.22 36.10 1.73 36.10 36.10 1069.43 1307.58 1.22 2258.64 2345.51 1.04
637 1 85.81 86.82 1.01 1.01 -0.39 -0.39 641.24 990.92 1.55 4029.30 4514.27 1.12
638 1 50.00 86.11 36.11 1.72 35.39 35.39 3703.41 9246.12 2.50 2057.98 1854.65 0.90

Repaired:
35

Avg. 1.03 52.70 84.33 31.63 1.6 30.82 29.20 2270.36 5026.83 2.21 3027.69 3097.92 1.02
668 1 0.00 0.00 0.00 n.a. 49.96 49.96 130.46 2257.56 17.3 2261.88 2348.53 1.04
669 1 50.00 50.00 0.00 1 0.00 0.00 1062.77 1480.36 1.39 2182.29 2349.58 1.08
670 1 0.00 0.00 0.00 n.a. 50.00 50.00 2089.21 1451.98 0.69 2184.26 2044.23 0.94

Failed:
3

Avg. 1 16.67 16.67 0.00 1 33.32 33.32 1484.15 1729.97 1.17 2209.47 2247.45 1.02
671 - 87.38 - - - - - 1951.87 1984.37 1.02 2260.38 2347.84 1.04
672 - 83.14 - - - - - 2022.07 2036.58 1.01 2191.92 2088.6 0.95

IMDB

Normal:
31 Avg. - 78.97 - - - - - 1167.99 1176.08 1.01 3859.67 3916.31 1.02

Normal Avg. - 77.83 - - - - - 367.14 372.34 1.01 2767.78 2755.42 1.00
Repaired Avg. 1.11 41.79 78.21 36.42 1.87 36.27 44.52 364.74 779.56 2.14 2702.91 2698.77 1.00

Failed Avg. 1.13 21.67 21.67 0.00 1 12.33 11.04 669.83 969.88 1.45 2719.42 2723.63 1.00
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TABLE 4: The Accuracy Improvement of the Repaired Problems

#Repaired Avg. Improvement(%)
Backward Forward Backward ForwardDataset

VG EG DR OL SC IO IL AD VG EG DR OL SC IO IL AD
Blob 12 10 8 4 31 28 13 20 27.26 29.13 18.33 -3.00 41.44 25.21 2.12 18.60

Circle 10 10 9 8 49 9 9 8 29.12 80.79 26.86 9.27 32.84 13.69 8.47 28.11
CIFAR-10 7 8 3 2 28 13 7 10 54.48 57.64 59.38 10.97 50.58 29.48 41.58 33.22
MNIST 8 10 4 8 21 7 13 9 87.41 87.21 86.02 56.80 82.77 75.03 0.45 0.73
Reuters 4 6 - 4 26 6 15 - 18.59 49.82 - 19.75 36.89 42.07 16.55 -
IMDB 8 6 - 4 12 3 8 - 36.43 85.94 - -0.96 31.33 13.67 16.21 -

Total/Average 49 50 24 30 167 66 65 47 41.39 65.92 45.01 15.14 44.87 28.10 11.79 21.23

these models and the training history before and after repair
and find that these models are affected by severe training
problems such as VG and EG, which caused them to stop
converging at an early stage of training. This illustrates, on
the one hand, the severe impact of training problems on
models, where the classification ability of the affected model
is difficult to improve even after dozens of epochs, and on
the other hand, the superiority of AUTOTRAINER in fixing
training problems and improving model accuracy. We also
notice that there are 11 models (out of all 414 models) whose
accuracy has a slight reduction after being repaired. Our
analysis finds that it is because they have other uncovered
problems. How to detect and repair these bugs will be one
of our future directions.

To further illustrate the repair effect of AUTOTRAINER,
we provide four repaired cases on different datasets
in Fig. 5. The blue and orange curves separately show
the accuracy of the original and repaired models. For
DR and VG problems in backward propagation (Fig. 5(a)
and Fig. 5(b)), the models repaired by AUTOTRAINER can
achieve accuracy over 50% in the first several epochs, and
continue to improve the accuracy in the subsequent training.
For IO and AD problems in forward propagation (Fig. 5(c)
and Fig. 5(d)), AUTOTRAINER can repair models and signifi-
cantly improve accuracy by replacing the activation function
and processing abnormal data.

From Table 4 and Fig. 5, we can observe that the accuracy
improvement of repair on those training problems related to
forward propagation and loss calculation is usually smaller
than the improvement in fixing training problems in back-
ward propagation (e.g., EG). The average improvement
of accuracy on repaired forward propagation problems is
20.33%, and the average accuracy boost on the repaired
backward propagation problems is 44.85%. We manually
analyze the repair process and results and find that the dif-
ference in repair effect mainly comes from the characteristics
of different training problems. Training problems like VG,
EG, and SC tend to lead to model training stagnation with
very low accuracy (e.g., around 10% accuracy in Fig. 5(a))
due to gradients that are too small or too large to update
weights. However, when IO, IL, and AD occur, the model
can often still update the weights, but the model is unable
to obtain loss function values to effectively guide the weight
updates, and thus training is difficult to converge to an
optimal, as shown in Fig. 5(d).

In repeated training trials, we observe that due to the
random occurrence of training problems (§3.1), the same
configuration may have different problem detection results.
The reason is that some problems do not appear during
training, and AUTOTRAINER can only detect remaining
training problems or no problems. We collect the problem
discovery rate of each model over five repeated trials and

use the median (i.e., 5) to divide the training problems
into two groups, namely frequent problem with a discovery
rate higher or equal to the median and occasional problem
with a discovery rate below the median. We then count
the averaged accuracy improvement of the model after
repairing frequent problems and occasional problems us-
ing AUTOTRAINER, as shown in the blue and green bars
in Fig. 6. Moreover, for models with occasional problem, we
record the accuracy improvement of training without being
affected by problems compared to the problematic training
(orange bar in Fig. 6). The frequent problems repaired by
AUTOTRAINER achieve the highest accuracy improvement,
reaching 36.14%. The repaired occasional problems show
an accuracy increase of 8.54%. The significant difference in
repair effect is due to the type of training problems. Frequent
problems include all gradient-related problems (e.g., VG
and EG), whose repair can result in an accuracy improve-
ment of over 80%, as shown in Table 6. Occasional problems
mainly consist of the OL problem which typically exhibits
an accuracy increment of about 10% after repair. Addi-
tionally, the accuracy improvement from retraining mod-
els with occasional problems is only 2.71%, which is only
31.73% of the accuracy improvement from AUTOTRAINER.
This indicates that retraining the model cannot effectively
solve occasional problems, further demonstrating the effec-
tiveness of the repair of AUTOTRAINER. In addition, the
different detection results caused by occasional problems
will eventually cause the final model to perform worse than
the repaired model. Our repeated experiment ensures that
all problems are detected and repaired by AUTOTRAINER.

Answer to RQ1: AUTOTRAINER is effective in detecting
and fixing training problems. It can detect all train-
ing problems without false positives in the experiment
and soon fix them one by one. In the experiment,
AUTOTRAINER detects 422 buggy models with 506 prob-
lems from a total of 701 models. Then it repairs 414
models and corresponding 498 problems. Particularly,
fixing the training problems in the backward propagation
and forward propagation steps separately obtain the
average accuracy improvement of 44.85% and 20.33%.
The training problem repair rate reaches 98.42%, and the
average model accuracy improves by 36.42% after repair.

5.3 Efficiency of AUTOTRAINER

Experiment Design and Results: To evaluate the efficiency
of AUTOTRAINER, we train all 701 models with and without
AUTOTRAINER enabled. During training, we separately col-
lected the time used to train the model and the memory
usage for both the original training and AUTOTRAINER.
The experiments are conducted 5 times, and the overhead
is calculated as the average of these 5 runs.
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(a) DR Problem in Backward Prop-
agation on MNIST Dataset
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(b) VG Problem in Backward Prop-
agation on CIFAR-10 Dataset
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(c) IO Problem in Forward Propa-
gation on Circle Dataset
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(d) AD Problem in Forward Prop-
agation on Blob Dataset

Fig. 5: The Repair Results of AUTOTRAINER on Different Datasets
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Fig. 6: Accuracy Improvement on Different Problems.
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(a) Circle Dataset
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(b) MNIST Dataset

Fig. 7: Runtime Overhead vs. Problem Check Frequency.

Runtime Overhead Analysis: For normal training, the run-
time overhead is purely from the problem checker, which
is about 1%. From Table 3, we observe that the runtime
overhead on smaller datasets is usually larger (e.g., Blob
8% vs. almost 0% for MNIST). This is because the total time
for training on small datasets is relatively short, making the
runtime overhead ratio larger. To handle buggy training in
experiments, AUTOTRAINER takes 0.68 more training time
on average. We perform a deeper analysis to understand the
overhead of the individual components and find that, no
matter whether training problems occur in the forward or
backward propagation steps, retraining takes over 99% and
the rest two parts (i.e., problem recognizer and repair) take
less than 1%. It means that AUTOTRAINER only costs a little
time (≤ 1% total overhead) in automatically searching the
suitable solutions for the problems, which requires lots of
manual operations and is time-consuming in existing strate-
gies. As discussed in §4.3, to repair a problem, it may try
several times, which leads AUTOTRAINER to train several
models. It is worth noting that, AUTOTRAINER implements
a fixed problem recognizer and solution scheduler in prob-
lem detection and repair, therefore, there are no cases where
the runtime overhead of detecting and selecting solutions
for a particular training problem is significantly higher than
that of other problems among the eight training problems.
Checking Frequency v.s. Runtime Overhead. More fre-
quent problem checking causes higher runtime overhead.
Suppose that one training iteration and one checking
separately take t1 and t2 time, then the overhead of
AUTOTRAINER is roughly q× t2/t1, where q is the checking

frequency. Fig. 7 presents the correlations between checking
frequency and runtime overhead on Circle and MNIST
datasets. The X-axis is the number of iterations between two
checks (1/q), and Y-axis is the runtime overhead. The solid
line represents the collected data and the dashed curve is
the theoretical results (i.e., q × t2/t1). As we can see, the
shapes of experiment data conform to our theoretical anal-
ysis. By comparing the two figures, we observe the smaller
dataset has a higher runtime overhead, which is consistent
with our data in Table 3. By default, AUTOTRAINER checks
the problem every 3 iterations, which causes less than 5%
overhead even for small datasets like Circle, and for large
datasets, the overhead will be less.

Lower frequency checking can reduce the overhead, but
may cause a longer delay in detection. Table 5 shows the ef-
fects of different check frequencies on the training problem.
Each row represents one problem type, and each column
denotes a different check frequency. Numbers in cells show
the delayed iterations between the occurrence of the prob-
lem and the detection of the problem. Considering VG, if
AUTOTRAINER performs the checking every 15 iterations, it
needs 6 extra iterations to detect it compared with checking
problems every other iteration. For AD problems that oc-
cur in forward propagation, smaller detection frequencies
also result in larger detection delays (from 0.35 to 6.56),
ultimately leading to wasting time on buggy training.
Memory Overhead Analysis. AUTOTRAINER has very lim-
ited memory overhead (-1% to 1% on average in the ex-
periments) since AUTOTRAINER reuses data that has been
collected. To detect problems, AUTOTRAINER reuses the
current gradient values, historical loss values, and train-
ing accuracy which are automatically collected and stored
in training by all major frameworks. The overhead of
AUTOTRAINER is mostly due to program variables, which
are negligible compared with neuron and gradient values.

Answer to RQ2: AUTOTRAINER can detect and re-
pair training problems efficiently. It brings an average
memory overhead of about 1% of the original memory
consumption. Moreover, 99% of the time overhead of
AUTOTRAINER comes from model retraining, and the
remaining 1% is used to detect problems and apply repair
solutions, whether the training problem occurs in the
forward or backward propagation.

5.4 Effects of Configurable Parameters
AUTOTRAINER leverages a set of configurable parameters to
recognize the symptoms and detect problems. We conduct
an evaluation to observe how each parameter affects the
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TABLE 5: Check Frequency vs. Delay in Problem Detection

Problem Detection Delay
1/q=2 1/q=3 1/q=4 1/q=5 1/q=9 1/q=15

VG 0.33 1.12 1.48 1.78 3.22 6.22
EG 0.38 1.38 2.38 3.38 7.38 13.38
DY 0.43 1.15 2.15 2.29 8.01 8.01
OL 0.40 1.60 1.60 2.40 3.40 6.40
SC 0.32 1.06 1.25 2.13 2.74 6.09
AD 0.35 1.17 1.62 2.21 3.01 6.56

0.10.0011e-051e-07 0.01
0.0001

1e-06
1e-08

0.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

β1
β2

(a) β1 and β2 in VG

12%20%28%36% 0.012
0.02

0.028
0.036

0.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

η ζ

(b) ζ and η in OL

0 60 120 180 30.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

(c) β3 in EG

0% 20% 40% 60% 80%100%
0.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

(d) γ in DR

0.0 0.008 0.016 0.024
0.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

(e) δ in SC

0.1 0.4 1.6 6.4 25.6102.4
0.0
0.2
0.4
0.6
0.8
1.0

Precision
Recall

(f) ω in AD

Fig. 8: AUTOTRAINER Detection Precision and Recall vs. Con-
figurable Parameters.

detection. The configurable parameters can be divided into
three categories, as shown as follows.
Type-A: Type-A parameters include α1, α2, α3, and α4 in Ta-
ble 1, which are used to determine the time window used to
detect the occurrence of VG, EG, DR, and AD problems. For
these problems, the same symptoms can also be observed
in the rest of the training iterations once they occur in one
iteration. We observe and confirm this phenomenon with 50
models and 3 runs on each model. This is also supported by
the existing work [23]. Thus, we set α1, α2, α3 and α4 to 0.
Type-B: AUTOTRAINER has only one Type-B parameter, the
expected accuracy threshold Θ, which is a training task-
dependent parameter. If not, we will adopt the value that
is used to determine if the training should be early stopped.
Type-C: Parameters in this category include β1, β2, and β3

for VG and EG; γ for DR; δ and ζ for OL; η for SC; and
ω for AD (defined in Table 1). The values of these param-
eters determine whether AUTOTRAINER can successfully
capture the real problem or not. To measure their effects on
AUTOTRAINER, for each problem, we use different values to
investigate how they can affect the detection effectiveness.
All experiments are performed on 100 models and repeated
5 times, and the final averaged results of the precision and
recall are shown in Fig. 8.
• VG: The values of β1 and β2 affect the detection results of
VG. If β1 or β2 is too large, it will introduce a lot of false
positives (i.e., the benign training is considered to suffer
from VG problem). If they are too small, it will reduce the
detection accuracy (i.e., true positives), as shown in Fig. 8(a).
The default values in AUTOTRAINER (i.e., β1: 1e−3, β2:

1e−4) can achieve high precision and recall.
• EG: Fig. 8(c) presents the relationship between preci-
sion/recall and the value of β3. Larger β3 will miss many
EG cases that are less serious. AUTOTRAINER selects 70 as
the default value of β3 to achieve 100% precision and recall
simultaneously, as shown in Fig. 8(c).
• DR: The detection results of DR is highly affected by the
value of γ (see Fig. 8(d)). Larger γ can increase the precision
but may ignore some DR problems that are not so severe.
When γ is set in range [60%, 90%], AUTOTRAINER achieves
the optimal result and the default value of γ is set as 70%.
• OL: Detecting the OL problem requires ζ and η, and
its relationships with precision and recall in detection are
shown in Fig. 8(b). It is consistent with our intuition that
larger ζ and η values will lead to higher precision and lower
recall. In AUTOTRAINER, the default values for ζ and η are
0.03 and 20%, which results in 100% precision and recall.
• SC: δ is used to detect the SC problem. A very small
δ results in very low precision and recall and too large δ
values may result in the ignorance of many buggy training
cases, leading to low precision. From Fig. 8(e), to achieve the
optimal precision and recall, δ should be from 0.004 to 0.014.
AUTOTRAINER selects the default value of δ as 0.01.
• AD: ω is the threshold to determine the AD problem
during training. As shown in Fig. 8(f), when ω is too small,
it will be difficult for AUTOTRAINER to detect AD problems
effectively, resulting in lower precision. A large ω will cause
a large number of false positives, resulting in a decrease in
the recall. To ensure the detection effect of AUTOTRAINER,
we set the default value of ω as 10.
Answer to RQ3: Configurable parameters can greatly af-
fect the detection precision and recall of AUTOTRAINER,
and improper parameters could lead to a large number
of false positives and false negatives. Based on the large-
scale evaluations, AUTOTRAINER selects a suitable set of
configurable parameter values as default to obtain the
optimal precision and recall simultaneously.

5.5 Effectiveness of Built-in Solutions
Experiment Design and Results: To evaluate the effective-
ness of the built-in solutions in AUTOTRAINER, we apply
each repair method corresponding to the problem to repair
it separately and record the repair result and accuracy im-
provement. We repeated the experiment 3 times to eliminate
the randomness, and Table 6 shows the averaged repair
effect and accuracy improvement of each solution on each
dataset. “Solve” and “Improv.” in Table 6 represent the pro-
portion of models repaired by the solution to all models to
be repaired and the average absolute accuracy improvement
of successful repairs, respectively. The subsequent columns
show the effects of applying each solution on each dataset.
The left-to-right order of repair methods in the table is
the default order of solutions when AUTOTRAINER tries to
repair a training problem.
Analysis: The experimental results demonstrate the effec-
tiveness of all the built-in solutions for repairing training
problems. For both VG and EG problems, the repair so-
lutions can effectively solve the problem and achieve an
accuracy improvement of up to 52.96%. The repair solutions
for IO, IL, and AD problems have achieved a 100% repair
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TABLE 6: The Repair Effects of the Built-in Solutions

Dataset Repair
Result (%)

VG EG DR OL SC IO IL AD
S2 S1 S2 S1 S3 S2 S1 S4 S7 S6 S4 S5 S7 S6 S4 S2 S8 S9

Blob Solve 100.00 66.67 100.00 100.00 100.00 100.00 100.00 66.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Improv. 18.96 17.44 33.73 -7.33 -14.80 7.22 2.89 -12.89 -3.00 -2.33 -2.50 -27.33 41.44 30.10 -2.25 15.56 -0.04 16.27

Circle Solve 87.50 75.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 97.67 90.70 2.33 100.00 100.00 100.00
Improv. 21.29 20.71 85.33 49.42 54.87 13.48 16.00 - 9.27 8.60 2.00 -7.33 33.05 26.64 -0.02 6.90 10.11 24.37

CIFAR-10 Solve 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 96.43 96.43 17.86 100.00 100.00 100.00
Improv. 56.74 58.59 52.36 0.50 1.67 12.34 58.85 - 10.97 8.03 4.42 -15.45 49.98 33.01 0.26 19.82 40.79 31.64

MNIST Solve 100.00 100.00 50.00 100.00 100.00 100.00 100.00 50.00 100.00 100.00 100.00 100.00 100.00 100.00 40.00 100.00 100.00 100.00
Improv. 87.64 87.37 0.02 14.61 51.60 86.02 87.84 0.00 56.82 56.55 17.99 -30.81 82.77 70.65 3.36 74.89 0.22 0.14

Reuters Solve 0.00 100.00 100.00 0.00 100.00 - - - 0.00 100.00 100.00 100.00 95.00 100.00 35.00 100.00 100.00 -
Improv. - 18.59 52.07 - 0.85 - - - - 19.75 5.63 1.96 40.24 31.08 0.02 36.57 16.16 -

IMDB Solve 100.00 100.00 100.00 100.00 0.00 - - - 50.00 100.00 100.00 100.00 90.91 72.73 9.09 100.00 100.00 -
Improv. 36.56 37.63 85.94 50.12 - - - - 1.26 0.50 -8.27 -7.41 30.04 11.91 0.00 11.43 10.02 -

Total Solve 91.18 85.29 92.11 84.21 86.84 100.00 100.00 23.53 76.47 100.00 100.00 100.00 97.32 94.63 32.89 100.00 100.00 100.00
Improv. 36.64 37.58 52.96 18.45 18.24 29.24 38.15 -2.27 13.34 15.15 2.45 -13.23 45.17 33.88 0.09 22.20 11.22 18.39

success rate. Across all models on the six datasets, they
improved the accuracy by 22.20%, 11.22%, and 18.39%,
respectively. It is worth noting that the repair effect of
the solutions on forward propagation problems is usually
slightly worse than that of solutions on backward prop-
agation training problems. For example, “S2” achieves an
accuracy improvement of up to 52.96% on the EG problem
but only 22.20% on the IO problem. The underlying reason
for this phenomenon is consistent with our analysis in §5.2,
i.e., when forward propagation problems occur, training
tends not to come to a complete standstill (which is different
from backward propagation problems like VG and EG), and
the model can still update weights and improve accuracy.
In addition, compared to other solutions, “S4” and “S5”
have low repair success rates of 23.53% and 32.89% for DR
and SC problems, indicating their limited applicability to
problematic models. Consequently, these two solutions have
the lowest priority in repairing the DR and OL problems.
AUTOTRAINER priorities solutions that achieve better repair
results (e.g., “S2” and “S1”) to effectively and efficiently
repair training problems in the model.

We further analyze the distribution and repair effects
of training problems on different models and datasets and
have the following observations. ❶ The occurrence of some
training problems is related to model architecture and train-
ing data. For example, the DR problem does not occur on the
RNN model that does not use the ReLU activation function.
There is no AD problem in the models we collected using
text datasets because ML frameworks (e.g., TensorFlow)
provide serialization preprocessing APIs for text data. In
addition, the VG and EG problems occur more frequently
in models using the IMDB dataset. This may be related to
the curse of dimensionality [61] of high-dimensional data,
making training more difficult to converge and prone to
these gradient problems. ❷ One solution could have dif-
ferent effects on different models and datasets. As shown
in Table 6, “S2” can effectively solve VG and EG problems
on various models, but fails to repair the VG problem on
several models with the Reuters dataset. Our analysis shows
that limited by the complexity of these models and their
depth of up to 21 layers, replacing the activation function
cannot effectively solve the VG problem. Gradient problems
can still accumulate during backward propagation. How-
ever, “S1” can effectively amplify the gradients through the
BN layer and alleviate the problems on these models. In
addition, we can observe that “S1” cannot effectively solve
the EG problem on the models with the Reuters dataset. This

is because the complex model structure causes the gradient
value to overflow at the beginning of the backward propa-
gation, making normalization ineffective on these models.
Moreover, “S7” obtained a poor repair effect on the text
dataset (e.g., the Reuters dataset). This phenomenon may be
related to the sparsity of the gradient of high-dimensional
data, and substituting optimizers cannot help the model
converge to the local minimum.

Answer to RQ4: All the solutions in AUTOTRAINER
have the capability to repair the training problem, and
most of them can fix the training problems with a high
success rate and significantly improve the model accu-
racy. Furthermore, the repair effectiveness of solutions
varies across models and datasets. To effectively repair
the given training problem, the built-in repair methods
of AUTOTRAINER will prioritize those with high overall
success rates and good repair effects on various models.

6 THREATS TO VALIDITY

AUTOTRAINER has three limitations. First, the detection and
repair performance on several particular models may de-
crease. We have tried our best to obtain as many models as
possible. AUTOTRAINER is currently evaluated on 6 datasets
and 701 models, which may be limited. Similarly, the effects
of the configurable parameter setting in AUTOTRAINER
may not hold when the number of models is significantly
larger. Furthermore, although the 9 built-in solutions in
AUTOTRAINER have proved their effectiveness in the prior
work and our experiment, there is no guarantee that they
will not introduce other severe training problems on some
particular models, although this has never been encountered
in our experiments.

Second, although AUTOTRAINER covers 8 common
training problems, there are still some rare but severely
affected problems that jeopardize the model training perfor-
mance. These uncovered problems will result in the repaired
model still having lower accuracy. We will continue to
update the training problems supported by AUTOTRAINER
and continue to maintain AUTOTRAINER to cover more
problems and provide better guarantees for model training.

Third, AUTOTRAINER currently does not support the
detection and repair of large models (LMs) (e.g., GPT [62],
BERT [63]). On the one hand, the architecture and usage
of LMs are different from that of CNNs or RNNs. The
current mainstream deployment and use of LMs are mainly
through downloading and finetuning pre-trained models.
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Most users hardly need and do not have the resource to train
the model from scratch, therefore, there are few reports of
the training problem on LMs and very little need to repair
the LMs’ training. Even if the model faces problems in the
pre-training [64], it is difficult to reproduce them due to
hardware limitations. On the other hand, existing problems
and research on LMs are mainly related to the underlying
hardware and software [65, 66], e.g., parallel strategies
on multiple GPU cores [67], which is different from the
algorithmic-level model training problem of AUTOTRAINER
detection and repair, and not in our scope of concern.

7 RELATED WORK

Machine learning techniques are widely adopted in various
software engineering tasks. The closest related work in
terms of design goals is DeepLocalize [27], which analyzes
DNN’s traces to identify and localize the faults in the
models. In constrast, AUTOTRAINER aims to provide real-
time detection and repair for various training problems
in the DNN model. Our work is highly related to DNN
model debugging and testing, automatic program repair,
and automated machine learning.

7.1 DNN Model Debugging and Testing
In addition to what we have discussed in §1, there are some
other efforts devoted to debugging DNN models [68, 69].
LAMP [70] utilized gradient information as data provenance
to help debug graph-based machine learning algorithms.
Ma et al. [5] proposed differential analysis on inputs to
fix model overfitting and underfitting problems. Different
from the existing debugging research, our work focuses on
designing automated and real-time detecting and repairing
system for various training problems in the DNN model.
Our work summarizes the symptoms of these training prob-
lems and evaluates the problem solutions to ensure timely
and effective fixes.

A great number of testing methods have been proposed
to test machine learning models, such as fuzzing [71],
symbolic execution [72], fairness testing [73], etc. DeepX-
plore [74] introduced the neuron coverage metric to measure
the percentage of activated neurons or a given test suite and
DNN model. Model testing are useful for other domains
such as image classification [72], automatic speech recog-
nition [75] and text classification [76]. Yan et al. [77] have
studied many coverage criteria and measured their corre-
lations with model quality (i.e., model robustness against
adversarial attacks), and empirical results show that existing
criteria can not faithfully reflect model quality. Different
from the above research, our work aims to monitor and test
the DNN training problems in real-time.

7.2 Automatic Program Repair
The purpose of automatic program repair is to automatically
derive patches to correct bugs in programs, usually includ-
ing fault location, patch candidate generation, and patch
candidate verification. Many different kinds of methods
have been employed in automated program repair. The
researchers have proposed search-based [78, 79], semantics-
based [80, 81] and specifications-based methods [82, 83] to

generate patches. Recentlty, Gissurarson et al. [84] leveraged
both property-based testing and the rich type system and
synthesis to design a novelty property-based automatic
program repair method. More program repair work can
be found in the survey [85]. Different from these research
efforts, our work is to repair DNN models that are not
uninterpretable rather than interpretable code.

7.3 Automated Machine Learning
Automated machine learning (AutoML) focuses on auto-
matically designing and building models for given train-
ing tasks. Various kinds of AutoML algorithms and tools
have been design to find efficient models [86–90]. However,
models generated by AutoML may still encounter train-
ing problems during training. The goals of AutoML and
AUTOTRAINER are different, and these two are complemen-
tary solutions that can be integrated with each other.

8 DISCUSSION

Insights for Improving DNN Quality: ❶ Although
AUTOTRAINER can monitor and repair 8 training problems
in real-time, it still faces 1.14 times extra time overhead
due to repeated training and searching for suitable repair
solutions. How to design more efficient and effective train-
ing problem detection and repair tools will be a direction
of future research. Our experiment results show that so-
lutions (e.g., “S7”) that adjust training configurations can
solve many problematic models. Studying and constructing
suitable training configurations for different model archi-
tectures and downstream tasks (e.g., sentiment analysis
and image classification) may be one of the directions for
effectively solving training problems in the future. ❷ Except
for the model and training configurations, training data
also affects the training results and DNN model quality,
leading to converging failure and even introducing other
problems such as bias and backdoors [91, 92]. How to build
an automated pipeline to debug and clean training data will
be a future direction. ❸ The life cycle of DL models includes
multiple stages such as training, inference, and fine-tuning,
and the models could still encounter new problems outside
the training stage that degrade the DNN quality, such
as catastrophic forgetting [93]. Different from the training
problem, problems in inference and fine-tuning stages can-
not be solved by substituting model activation functions or
layers, which seriously affects the trained parameters in the
model. How to build a monitoring and repair framework for
other stages of the model life cycle will be a future direction.
Software Bugs in Model Training: DL software bugs could
cause model training to fail to converge, increase training
overhead, or even crash [64, 94]. Even worse, such bugs can-
not be repaired by the model-level solutions implemented
in AUTOTRAINER. How to design an automated framework
to detect and locate these possible software bugs during
training is of great significance to the development of AI
software technology and security.

9 CONCLUSION

This paper presents AUTOTRAINER, an automatic monitor-
ing and repairing system for DNN model training. It pro-
vides a real-time monitor for the model training to identify
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the potential problems according to the problem symptoms
and automatically fixes them with the built-in solutions.
By doing so, it can prevent and fix the training problems
at an early stage, saving a lot of time and computation
resources. Our experiment results show that AUTOTRAINER
can effectively and efficiently detect and repair eight train-
ing problems (i.e., vanishing gradient, exploding gradient,
dying ReLU, oscillating loss, slow convergence, improper
output activation function, improper loss function, and ab-
normal data) and improve the average accuracy of 36.42%
on six datasets.
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