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With the application of deep learning technology, tools of DL framework testing are in high demand. Existing
DL framework testing tools have limited coverage of bug types. For example, they lack the capability of
effectively finding performance bugs, which are critical for DL models regarding performance, economics,
and the environment. Moreover, existing tools are inefficient, generating hundreds of test cases with few
trigger bugs. In this paper, we propose Citadel, a method that accelerates bug finding in terms of efficiency
and effectiveness. We observe that many DL framework bugs are similar due to the similarity of operators
and algorithms belonging to the same family. Orthogonal to existing bug-finding tools, Citadel aims to find
new bugs that are similar to reported ones that have known test oracles. Citadel defines context similarity to
measure the similarity of DL framework API pairs and automatically generates test cases with oracles for
APIs that are similar to the problematic APIs in existing bug reports. Citadel effectively detects 58 and 66
API bugs on PyTorch and TensorFlow (excluding those rejected by developers or duplicates of prior reports),
many of which, e.g., 13 performance bugs, cannot be detected by existing tools. Moreover, 35.40% of test cases
generated by Citadel can trigger bugs significantly transcending the state-of-the-art method (3.90%).
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1 INTRODUCTION
With the development of Deep Learning (DL) techniques, DL-powered systems are playing an
increasingly significant role in software development. For example, Microsoft has developed a
new search engine powered by DL techniques to enhance the search results [16]. Moreover, the
global AI software market is forecasted to increase from $257 billion in 2025 to $1,459 billion
by 2034 [21]. As the backbone of DL-powered systems, DL frameworks (e.g., TensorFlow and
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PyTorch) empower developers by offering API functions to create, train, optimize, and deploy
DL-powered systems. These frameworks support diverse domains, providing societal benefits in
areas like image recognition [41], self-driving [38], and natural language processing [51]. Similar
to traditional software systems, DL frameworks can also have bugs, which can lead to erroneous
outputs, increased system overhead, and even crashes for DL-powered systems, thereby jeopardizing
user property and personal safety [24], and contributing to energy inefficiency and environmental
issues [45, 50, 60]. Consequently, there is a pressing need for tools capable of identifying bugs in
DL frameworks.

There are two primary approaches to testing DL frameworks: model-level testing [39, 40, 66, 79]
and API-level testing [33, 80]. Model-level testing mutates existing DL models to generate more
diverse DL models and employs differential testing methods to compare model execution results
across different frameworks for bug detection. In contrast, API-level testing approaches generate
test code directly for DL framework API functions, exposing bugs through fuzzing techniques.
For example, DocTer [81] conducts fuzzing for DL frameworks by extracting input constraints
from API documentation and using these constraints to guide test case generation. DeepREL [33]
identifies relational API functions of DL frameworks and ‘borrows’ test inputs from invoked API
functions to test other relational API functions.

Despite these advancements, existing DL testing tools have notable limitations. Firstly, existing
testing tools have limited coverage of bug types. For example, they can hardly detect performance
bugs that can significantly impact DL model training and inference speed and degrade responsive-
ness, resulting in energy waste and environmental concerns [25, 45, 50, 60], especially for large DL
models like GPT-3 [65]. The performance bug shown in Fig. 2 causes the time overhead to increase
to 2.33 times its original value and a substantial carbon footprint. However, current testing methods
cannot detect such performance bugs in DL API functions. Secondly, existing bug-finding tools
exhibit inefficiencies in generating test cases that trigger bugs. These tools often leverage random
walks or heuristic algorithms to generate test cases. However, due to the huge search space of
API arguments and inputs, such approaches often generate numerous test cases, but only a small
fraction of them trigger actual bugs. For example, DeepREL generates an excess of 330,000 test
cases, yet only 1.23% of them have the potential to trigger bugs. Requiring hundreds of test cases to
detect a single bug makes the current DL framework testing tools very inefficient in detecting bugs.
To devise an efficient test method capable of identifying various types of bugs, we thoroughly

analyze the API functions of PyTorch and TensorFlow and study their reported issues on GitHub.
The API functions of these frameworks naturally fall into distinct groups, where API functions
within each group execute similar operators and algorithms, exhibiting a tendency for similar bugs.
Considering the convolutional operators torch.nn.Conv1d, torch.nn.Conv2d, and torch.nn.Conv3d,
each is designed for inputs of different dimensions. Despite their differences, these operators share
commonalities such as call lists (e.g., aten::convolution in the source code) and the use of the
cudaLaunchKernel function for GPU computations. Notably, reported issues [6, 7] emphasize that
when a bug arises in one convolution operator, other operators within the same group are prone to
similar bugs.
Building upon this observation, we propose Citadel, a tool that accelerates the finding of

bugs in terms of efficiency and effectiveness. Orthogonal to existing tools that explore new
anomalous behaviors and report bugs, Citadel aims to uncover new bugs that are similar to
reported ones that have known test oracles, regardless of bug types. It leverages reported bugs
on one API function to create test cases for its analogous API functions, effectively addressing
the aforementioned limitations observed in existing work, and can easily co-work with other
testing methods to accelerate bug discovery. Compared with existing tools, which can only detect
status bugs and value bugs, Citadel has better bug type coverage and effectiveness. It has the
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capability to detect bugs regardless of their types, such as performance bugs caused by errors in
the underlying implementation or optimization, including unexpected time or memory overhead.
Moreover, Citadel is more effective and efficient in test case generation. It adopts the code that has
triggered a bug on a problematic API function to create test cases for its analogous API functions.
Essentially, it leverages prior knowledge rather than heuristics to explore potential API bugs in the
new context, significantly improving the chances of finding bugs. To be specific, we first collect
existing bug reports and identify problematic APIs. Citadel then utilizes both static and dynamic
analyses on the DL framework source code and unit test cases for the identification of analogous
API functions. In this process, it extracts context information (e.g., APIs’ call stacks) to gauge the
similarity between API functions, a concept referred to as context similarity in Citadel. For a
collected problematic API, Citadel modifies the bug-triggering code from its bug report to generate
new test cases for its analogous API functions. Throughout this process, Citadel addresses two
potential differences between the API functions: differences in arguments and dimensions, if they
exist. Finally, Citadel executes the generated test cases, employing the buggy behavior of the
problematic API function as a test oracle to effectively identify potential bugs in the target API
function.
Our evaluation demonstrates that Citadel successfully identified a total of 77 API bugs in

PyTorch and 74 in TensorFlow, including 58 and 66 previously unreported bugs, of which 36 and
56 have been confirmed. Additionally, 49 of these bugs are detected by analogous API pairs that
existing approaches do not cover. Furthermore, a noteworthy 35.40% of the test cases synthesized by
Citadel expose bugs, significantly surpassing the 0.74%, 1.23%, and 3.90% bug-triggering capacity
exhibited by the test cases generated by DocTer, DeepREL, and TitanFuzz, respectively.

Our contributions are:

• We propose context similarity as a measurement for functional similarity among DL frame-
work API functions.

• We develop a novel test case generation method for DL frameworks that leverages the
knowledge from confirmed API bugs to synthesize new test cases and uncover bugs in
analogous API functions, regardless of bug types.

• We develop a prototype Citadel based on the proposed idea. The experimental results on
PyTorch and TensorFlow show that Citadel detects 58 and 66 previously unknown API
bugs, respectively, among which 36 and 56 have been confirmed or fixed by developers after
reporting. 35.40% of test cases generated by Citadel can be used to trigger bugs.

2 BACKGROUND
2.1 DL Framework API Functions and Models
DL Framework APIs. Like traditional software programs, DL frameworks use various API func-
tions to call source code functions and perform operations. Taking PyTorch [64] as an example, its
API functions include performing basic matrix operations (e.g., torch.mul for multiply operation),
calculating loss functions (e.g., torch.nn.MSELoss for measuring mean squared error), and building
model layers (e.g., torch.nn.Conv2d for convolution layers). When calling an API function, users
first need to assign values for its required and optional arguments, where the values of required
arguments are mandatory to provide, and the optional arguments have their default values in APIs.
Then, the API function runs the underlying source code that performs corresponding calculations
and operations on the hardware (e.g., CPU and GPU) and obtains tensors, Boolean values, etc. as
the result.
DLModels.ADLmodel is a parameterized function 𝐹𝜃 : 𝑋 ↦→ 𝑌 , where 𝑥 ∈ 𝑋 is an𝑚−dimensional
input and 𝑦 ∈ 𝑌 is the corresponding output label. Typically, a DL model is composed of several
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connected layers, and an 𝑛-layered model can be represented as 𝐹𝜃 = 𝑙1 ◦ 𝑙2 ◦ · · · ◦ 𝑙𝑛 , where 𝑙
represents a layer and 𝜃 is the model weight. Each layer 𝑙𝑖 in the model can be constructed by several
DL framework API functions. Therefore, a DL model can also be represented as a directed acyclic
graph (DAG) in that API functions are nodes, and the returned values of API (e.g., tensors) are edges.
Running and training a DL model 𝐹 on the input-output pairs (𝑥𝑖 , 𝑦𝑖 ) is essentially calling a series
of API functions and passing their outputs based on the topological sorting of its computation
graph [33].

2.2 DL Framework Testing
DL framework testing methods construct test cases (e.g., models) to explore abnormal behaviors of
DL frameworks and discover bugs Depending on the generated test cases, existing DL framework
testing methods can be mainly divided into model-level testing and API-level testing [33, 80].
Model-level testing. These testing methods usually build a large number of models and apply
mutation strategies on models to explore the potential bugs of the APIs and layers in the model.
To construct test oracles, prior work performs differential testing by building and testing the
same model on multiple DL frameworks [39, 40, 66, 79]. CRADLE is one of the first to use this
method to test DL framework bugs. Based on Keras [47], which can build and train models on
different DL frameworks as backends, it conducts differential testing on three frameworks (i.e.,
TensorFlow, CNTK, and Theano) and finds 12 bugs. Additionally, Muffin [39] creatively designs
the data tracking method to apply differential testing on the training phase of models and finally
discovers 39 new bugs. Although the model-level methods obtain outstanding test results, they
still have great limitations in applications. Due to limitations imposed by the test model, these
methods typically support only a limited subset of API functions related to the models. For instance,
existing research [80] reports that LEMON covers only 35 TensorFlow APIs. Furthermore, since
the test oracle relies on the implementations of multiple frameworks, inconsistencies detected
during testing are often difficult to verify as real bugs, which hampers the effectiveness of the bug
detection process [40, 66].
API-level testing. Different from the model-level methods, the API-level framework testing
methods do not depend on the implementations of multiple frameworks and have the capability to
test abnormal behaviors of more API functions. API-level testing usually extracts API constraints
of inputs and arguments based on the documentation or test code and generates test cases based
on the fuzzing technique [29, 32, 33, 80, 81, 83, 88]. DocTer [81] analyzes the API document syntax
and extracts input constraints. It can generate test cases for three different DL frameworks and find
94 bugs on these frameworks. EAGLE [76] proposes that some APIs have functional equivalence.
It designs 16 new DL equivalence rules and detects 25 inconsistencies and bugs on TensorFlow
and PyTorch. In addition, DeepREL [33] designs two elaborated equivalence relations and matches
API pairs based on these equivalence relations. It considers the output values and status of APIs in
a pair as test oracles for each other and detects both crash and inconsistency bugs for over 1,000
PyTorch API functions. TitanFuzz [31] and ∇Fuzz [83] leverage large language models (LLMs)
and automatic differentiation to generate test code and implement API-level fuzzing to detect
numerical inconsistencies and crashes in DL frameworks. Note that localizing the root cause of
APIs’ abnormal behaviors is a challenging task, often requiring significant time and effort. Existing
methods [33, 81] typically count the number of abnormal behaviors in different APIs (i.e., API bug
in this paper) without distinguishing whether they share the same root cause or implementation
errors. Following the prior work, Citadel leverages existing bug reports to effectively find and
report bugs on analogous API functions without being limited by bug types.
DL framework bugs. DL framework bugs can be mainly divided into three types through symp-
toms, i.e., status, value, and performance bugs [27]. Status bugs affect the execution status of the
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DL API and model, including crashes, segmentation faults, exceptions, etc. Value bugs that are
caused by numerical errors in the computation of DL operators include inconsistent outputs and
NaN (Not A Number) outputs. Existing framework testing tools focus on the above two types of
bugs [33, 40, 81]. Performance bugs refer to those caused by errors in the underlying implementation
or optimization, including unexpected time or memory overhead.

2.3 Code Similarity Measurement
Code similarity measurement aims to evaluate the similarity of multiple code blocks and find
potential code clones, plagiarism, and refactoring. Existing static approaches proposed methods
based on the metrics, texts, and tokens [36, 53, 56, 78]. Researchers also measure code similarity
based on Abstract Syntax Trees (ASTs) and graphs (e.g., control flow graphs (CFG)) [26, 85]. In
addition, some research proposes the functional similarity between programs from the perspectives
of input and output and function calls [55, 72], etc. However, these methods and tools are usually
designed for code snippets in one single programming language, but DL framework API functions
execute on both Python and C++ source code and involve various wrappers, which poses a challenge
in evaluating the similarity between these API functions. Inspired by existing approaches, Citadel
defines and calculates the context similarity to match and test DL framework API functions. Citadel
calculates the similarity of source code blocks from the perspectives of inputs, outputs, and functions.
Then it combines the above results with the called functions and traces of different DL framework
APIs to match APIs that have a similar functionality and execution context.

3 MOTIVATION
State-of-the-art DL framework testing tools [33, 39, 81] have two major limitations.
• Existing approaches have limited coverage on bug types. They focus on status and value

bugs, lacking the capability of effectively detecting others, e.g., performance bugs. Existing
methods typically utilize the differential testing techniques to construct pseudo test oracles for bug
detection. These approaches compare the output results of the same or equivalent API functions
on different frameworks/devices to identify status bugs (e.g., crashes) and value bugs (e.g., NaN
outputs) [31, 33, 39, 40, 66, 76]. However, they are generally unable to construct test oracles to
detect performance bugs due to the difficulty of obtaining test oracles. In addition, although some
metamorphic testing methods have successfully identified several performance bugs [80], their
effectiveness is constrained by the manually designed metamorphic relations. As a result, they can
only test the specific API behaviors (e.g., those related to tensor types) and are unable to identify
broader categories of performance bugs (e.g., the LazyConvTranspose2d bug in Fig. 2).
• Existing methods need to generate numerous test cases to trigger a bug, resulting in

inefficient testing. To uncover bugs within DL frameworks, existing work usually leverages
random walks or heuristic algorithms to generate test cases and models, exploring potential API
behaviors [33, 39, 40, 81]. On the one hand, considering the vast search space of the arguments
and inputs of API functions, the random method has a low probability of generating a test case
that reveals a bug. On the other hand, the heuristic algorithm (e.g., Genetic Algorithm) typically
requires the construction of large populations and multiple generations of mutation to search for
bugs, rendering them impractical. Moreover, whether the evaluation of the heuristic algorithm can
effectively guide the testing is questionable. Consequently, existing work typically needs to generate
hundreds of test cases to uncover a bug, resulting in inefficient testing on the DL framework.

4 DESIGN
We observe that DL framework API functions naturally fall into groups. For example, in PyTorch,
while APIs like Conv1d, Conv2d, and Conv3d expose parameter signatures designed to accommodate
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Fig. 1. Overarching Design of Citadel

different data dimensions, they call similar or even the same operators and algorithms during
runtime, indicating that their functionality and implementation are highly similar. Existing research
has confirmed that this phenomenon of code cloning is prevalent in DL frameworks [23]. Code
cloning not merely significantly increases software maintenance costs but also accelerates the
propagation of defects, that is, implementation errors in one API are highly likely to exist in other
analogous API functions within the same group [42]. To verify this hypothesis, we sample and
manually analyze over 300 real bug reports and corresponding patches from DL frameworks and
find that API functions within the same group are highly susceptible to similar or even the same
implementation errors, leading to a series of bugs across multiple APIs [2, 4, 6]. For example, prior
work [81] has detected a series of crash bugs on the conv1d, conv2d, and conv3d APIs of PyTorch,
which actually have the same implementation error (i.e., missing checks on the variable groups)
and can eventually be fixed by the same patch1. Based on the above findings, this paper proposes
CITADEL, which aims to systematically exploit the similarities in functionality and implementation
between APIs (i.e., contextual similarity) and combine them with known bug reports to efficiently
discover bugs in DL framework APIs.

Fig. 1 shows the overview of Citadel. The inputs to Citadel include DL framework repositories,
real-world bug cases collected from the framework issues, and the signature similarity between DL
API functions [33]. Specifically, in this paper, Citadel is applied to the PyTorch and TensorFlow
repositories, two of the most widely used DL frameworks, which have garnered 87K and 189K
stars on GitHub, respectively. Bug cases are collected from the issue lists of these two frameworks,
including reproducible buggy code and problematic API functions (§4.1). The workflow of Citadel
begins by extracting context information from the DL framework’s repository, including the API
function call stacks and analogous function groups derived from the framework’s source code. In
this process, the dynamic profiler (§4.3) generates unit test cases for DL API functions and records
their call stacks, capturing the source code functions invoked during execution. Simultaneously, the
static analyzer (§4.4) examines the DL framework’s source code and clusters analogous functions
based on argument and callee similarity. Citadel proposes context similarity, which utilizes API call
stacks to measure the similarity between API functions. Additionally, the analogous source code
functions are treated as identical during similarity calculation. Leveraging the context similarity
and the signature similarity [33], the API matcher (§4.5) matches analogous API pairs. Furthermore,
the matcher verifies the arguments of each API pair and discards those with unsolvable argument
mismatches. For a problematic API function (i.e., source API) and its analogous API function (i.e.,

1https://github.com/pytorch/pytorch/pull/77919
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01    layer_1 = torch.nn.LazyConvTranspose2d ( out_channels = 512, groups = 4, ...)

02    model_1 = build_model(layer_1)

03    actual_time_overhead_1 = training_cost(model_1)

04    expected_time_overhead_1 = expected_cost(model_1)

11    layer_2 = torch.nn.Conv2d( in_channels = 512, out_channels = 512, groups = 4, ...)

12    model_2 = build_model(layer_2)

13   actual_time_overhead_2 = training_cost(model_2)

14    expected_time_overhead_2 = expected_cost(model_2)

Adjusting Arguments to
Generate Test Cases

①

Groups fails to materialize speedup !

11.79 s (actual_time_overhead_2) > 8.91 s (expected_time_overhead_2)

(b) Confirmed bug on Conv2d

Unexpected Time Overhead !

46.75 s (actual_time_overhead_1) > 20.09 s (expected_time_overhead_1)

Triggering
New Bugs

②

(a) New bug on LazyConvTranspose2d

Fig. 2. Performance Bug on LazyConvTranspose2d

target API), the test case generator utilizes the reproducible buggy code of the source API, which is
collected in the bug case list, to synthesize new test cases for the target API (§4.6). The test case
evaluator then executes new test cases and leverages the buggy behavior exhibited by the source
API to identify bugs in the target API, including status, value, and performance bugs (§4.7). Finally,
Citadel reports the newly detected API bugs to the user.
Citadel in an example. Citadel detects a total of 151 API bugs, including 103 status bugs, 35
value bugs, and 13 performance bugs. Moreover, 35.40% of test cases generated by Citadel can
trigger bugs, and this ratio is only 0.74% and 1.23% in DocTer, DeepREL, respectively.
Here we provide a real-world performance bug found by Citadel as an example (Lines 1-4

in Fig. 2(a)) to show how it works. One collected bug on Conv2d (Fig. 2(b)) reports that the ‘groups’
argument in this function fails to speed up the training and inference. Grouped convolution
aims to employ multiple kernels and produce multiple channel outputs to increase the network
efficiency [37, 49]. Therefore, the group convolution is anticipated to bring a lower time overhead
compared to executing these convolution layers independently. The code in the collected bug uses
the execution time of independent convolution layers to estimate an upper bound on expected
time overhead of group convolution, which is accepted by the developers, and finds that the actual
overhead of group convolution (11.79 s) is much greater than the expected upper bound (8.91 s),
therefore identified the performance bug on Conv2d. Citadel analyzes the context information (e.g.,
call stacks) of DL API functions to construct pairs of analogous API functions that share context
similarity. One such pair consists of Conv2d and LazyConvTranspose2d. Then, Citadel generates test
cases for LazyConvTranspose2d based on the reproducible code of the problematic API Conv2d. For
each analogous API pair, Citadel analyzes the arguments of the two API functions to identify
differences and makes adjustments to the buggy code accordingly to construct a test case for the
target, ensuring the generated test case is executable. In this instance, Citadel remove ‘in_channels’
to resolve the difference between APIs’ arguments, which is highlighted by green ( 1 ). In addition,
Citadel leverages the method in the source bug report of Conv2d to estimate the expected upper
bound on the time overhead of the grouped LazyConvTranspose2d layers using the overhead of
independent LazyConvTranspose2d layers. The new test case reveals that LazyConvTranspose2d with
‘group’ argument also exhibits a higher time overhead than executing these layers individually,
which is the same anomalous behavior as the reported bug in Conv2d ( 2 ). Specifically, as shown
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Fig. 3. A Demo of Sampling Bug cases

in Fig. 2(a), when we set the ‘out_channels’ to 512 and ‘groups’ to 4 in LazyConvTranspose2d layer
and construct model_1 with eight such group convolution layers, the actual time cost of training
model_1 is 46.75 s, which is markedly higher than the time cost of executing these layers individually
(20.09 s). Finally, Citadel discovers a performance bug on the LazyConvTranspose2d API function,
which has been confirmed by developers [11].

4.1 Preparation: Bug cases Collection
We implement a bug case sampler to extract reproducible bug cases from the latest tens of thousands
of GitHub bug issues (both open and closed) of the two DL frameworks as the Citadel’s input,
discarding issues that lack reproducible code. Currently, PyTorch and TensorFlow provide well-
structured issue templates for bug reporting [14, 18]. These templates request minimal and complete
code examples to reproduce the bug and the anomalous behaviors. Taking the Conv2d bug in Fig. 2
as an example, its report contains executable code to call the buggy convolution layers (Lines 11-12
in Fig. 2). Additionally, its code calculates the expected time overhead of the group convolution
and contrasts it with the actual time cost to directly demonstrate the buggy behavior (Lines 13-14).
Fig. 3 shows a real report from the TensorFlow repository, consisting of the title, status, bug

description, test code, and a timeline. To extract the buggy code, the sampler first judges whether one
issue includes test code ( 1 ) and discards those lacking test code. Then, it checks issue labels ( 2 ) and
discards reports that are not marked as bugs, crashes, etc. by developers. These issues usually report
non-bug problems (e.g., documentation typos) and are not assigned labels by developers. During this
process, the sampler also discards reports related to specific hardware (e.g., M1 chips [12]). Limited
by the experiment environment, we cannot reproduce these bugs. Finally, the sampler examines
the issue timeline ( 3 ) and discards issues with fewer than 3 comments, which are usually reports
of issues that developers do not care about or intend to work on [9]. It also discards closed issues
that lack associated commits or pull requests. Such issues often arise from users’ misconceptions of
expected behaviors and are promptly addressed by developers [10]. After extracting buggy code, the
sampler matches the most frequently mentioned API function from the ‘Title’ and ‘Bug Description’
(as shown in Fig. 3) as a problematic API candidate and verifies it in the corresponding test code.
If the candidate does not appear in the code, the second most mentioned API is selected, and so
on. With such a method, the problematic API in Fig. 3 can be correctly identified as tf.broadcast.
Detailed implementation of the sampler is in our repository [17].
The bug cases collected by the sampler will be manually verified to determine whether the

reported buggy behavior can be reproduced and to classify their bug types (i.e., status, value, or
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performance bug). Specifically, we invite two co-authors in the fields of software engineering
and artificial intelligence to review the collected cases and label their bug types based on the
taxonomy in §2.2. In addition, since Citadel cannot currently leverage performance bug cases that
describe expected overhead in natural language or images [5] to generate new test cases, during the
manual review, we only retain those with available code for calculating and estimating the expected
overhead. For inconsistent review results, we invite a third co-author to lead the discussion until
the review results are recognized by all three.
We acknowledge that, similar to prior approaches, CITADEL also requires a certain amount of

manual effort, mainly to verify and ensure the effectiveness of the test cases extracted from bug
reports, as described in Section 4.1..

The manual effort at this preparation stage is mainly to verify and ensure the effectiveness of the
test cases extracted from bug reports, which will be used in the following experiments (§5.2). Note
that in some application scenarios, once the effectiveness of the test cases is ensured, the associated
manual effort can be significantly reduced or even eliminated. For example, when Citadel is used
in conjunction with other fuzzing tools, it can directly leverage the test cases that are generated by
other tools and have triggered individual API bugs as input. Citadel can automatically construct
new test cases for analogous APIs without requiring additional verification, thereby enabling
effective and efficient bug detection.

4.2 Context Similarity
Context similarity calculates the similarity between the runtime context of APIs, and the similar
contexts intuitively show that the functionality of APIs would be similar. We observe that on some
DL framework APIs (e.g., Conv1d, Conv2d, and Conv3d in PyTorch), although there are differences
between their inputs or arguments (e.g., different dimensions), they have similar functionalities and
implementations, which can be reflected by context similarity. Many issues and patches [2, 4, 6] in
GitHub further reveal that API functions that have similar functionalities are prone to have similar
bugs due to one erroneous implementation of an underlying function. Moreover, the prior work [76]
has proposed that the functional similarity between API functions can guide the construction of
equivalence rules in testing. Therefore, we define and measure the context similarity between API
functions to find API functions that have similar functionalities and leverage bugs on one API
function to effectively identify potential bugs on its analogous API functions.
Specifically, we measure the context similarity 𝑆𝑖𝑚𝐶𝑇𝑋 (𝐴𝑆 , 𝐴𝑇 ) for any API pair (𝐴𝑆 , 𝐴𝑇 ) in

Citadel:
𝑆𝑖𝑚𝐶𝑇𝑋 (𝐴𝑆 , 𝐴𝑇 ) = 𝐽 (𝐶𝑇𝑋𝑆 ,𝐶𝑇𝑋𝑇 ),

where 𝐶𝑇𝑋𝑆 and 𝐶𝑇𝑋𝑇 represent the context information of 𝐴𝑆 and 𝐴𝑇 , which is collected by the
static analyzer and dynamic profiler. 𝐽 indicates the metric to calculate the similarity between
𝐶𝑇𝑋𝑆 and 𝐶𝑇𝑋𝑇 . In this paper, we use Jaccard similarity coefficient [59] as 𝐽 to calculate 𝑆𝑖𝑚𝐶𝑇𝑋 .
The greater the similarity between the execution contexts of two API functions, the higher the
probability that they have similar underlying implementations and perform similar operators, and
they are also more susceptible to similar bugs.

4.3 Dynamic Profiler
The most important context information of APIs is the source code functions they call during
execution (i.e., the call stack), which intuitively demonstrates the underlying implementation of
the API functions. To effectively collect such context information, the dynamic profiler executes
unit test cases for API functions and records call stacks. The unit test cases consist of the test
cases collected from DL framework repositories and the test cases generated by existing test case
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generation tools [33, 81]. These cases are intended to examine the expected behaviors of APIs
during runtime and explore the analogous behaviors and edge cases. Fig. 4 illustrates how Citadel
extract context information and matches Conv2d and LazyConvTranspose2d in the Fig. 2 as analogous
APIs. The solid box in Fig. 4 illustrates part of the API call stacks collected by the profiler. During
execution, both APIs call the source code function aten::convolution for performing convolution
operations and cudaLaunchKernel related to GPU services. In addition, Conv2d calls the source code
function aten::conv2d related to the optimization of 2D convolution, while LazyConvTranspose2d calls
aten::conv_transpose2d related to transpose convolution.

4.4 Static Analyzer
Existing research [23] has revealed that a significant number of code blocks and functions with
similar implementations exist within the source code of DL frameworks. Source code functions
exhibiting similar functionality and implementation patterns may have similar errors, leading
to bugs in the DL APIs that invoke them. The static analyzer is designed to identify and cluster
these analogous functions within the source code. It then incorporates them as part of the context
information provided to the API matcher, facilitating the measurement and matching of APIs with
similar execution contexts. Inspired by the prior work [22, 55, 61, 72], the static analyzer determines
whether two functions, 𝐹1 and 𝐹2, have similar implementations by evaluating two key aspects:
input and output arguments similarity 𝑆𝑖𝑚𝑖𝑜 and callees similarity 𝑆𝑖𝑚𝑐𝑎𝑙𝑙 .
Input and output arguments play a crucial role in determining functional similarity in code
blocks [22, 72]. For a function 𝐹1 within the source code, the static analyzer captures its input
and output arguments and formalizes them as a set 𝐼𝑂𝐹1 = {𝑎11, 𝑎12, ...., 𝑎1𝑛}, where 𝑎1𝑖 represents an
input or output argument of 𝐹1. To evaluate the similarity of two sets, we use the Jaccard similarity
coefficient [59], a widely utilized statistical measure [67, 73]. The Jaccard similarity coefficient
𝐽 (𝐴, 𝐵) for two given sets 𝐴 and 𝐵 is defined as follows:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

Then 𝑆𝑖𝑚𝑖𝑜 (𝐹1, 𝐹2) can be calculated as:

𝑆𝑖𝑚𝑖𝑜 (𝐹1, 𝐹2) = 𝐽 (𝐼𝑂𝐹1 , 𝐼𝑂𝐹2 ) =
|𝐼𝑂𝐹1 ∩ 𝐼𝑂𝐹2 |
|𝐼𝑂𝐹1 ∪ 𝐼𝑂𝐹2 |

Callees, which represent the dependencies of functions, also serve as indicators of functional
similarity between code blocks [55, 61]. Similar to input and output arguments, the static analyzer
collects and formalizes callees of 𝐹1 as a set 𝐶𝑎𝑙𝑙𝐹1 = {𝑓 11 , 𝑓 12 , ...., 𝑓 1𝑛 }, where 𝑓 1𝑖 denotes a callee of
𝐹1. Citadel also computes 𝑆𝑖𝑚𝑐𝑎𝑙𝑙 (𝐹1, 𝐹2) through Jaccard similarity coefficient.

𝑆𝑖𝑚𝑐𝑎𝑙𝑙 (𝐹1, 𝐹2) =
|𝐶𝑎𝑙𝑙𝐹1 ∩𝐶𝑎𝑙𝑙𝐹2 |
|𝐶𝑎𝑙𝑙𝐹1 ∪𝐶𝑎𝑙𝑙𝐹2 |

The static analyzer considers two source code functions to have similar implementations when
both similarities exceed the built-in threshold.

𝑆𝑖𝑚𝑖𝑜 (𝐹1, 𝐹2) ≥ 𝛼1 ∧ 𝑆𝑖𝑚𝑐𝑎𝑙𝑙 (𝐹1, 𝐹2) ≥ 𝛼2,

otherwise, they are considered dissimilar. The dashed box in Fig. 4 shows how the static analyzer cal-
culates the similarity between two source code functions aten::conv2d and aten::conv_transpose2d.
Red marks input and output arguments, and blue highlights callees. Given that these two functions
share identical input and output arguments (e.g., const Tensor& weight) and call the same functions
(e.g., at::convolution), both 𝑆𝑖𝑚𝑖𝑜 and 𝑆𝑖𝑚𝑐𝑎𝑙𝑙 exceed the thresholds. Therefore, aten::conv2d and
aten::conv_transpose2d are classified into one group of analogous source code functions.
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aten::
convolution

aten::conv2dtorch.nn.Conv2d 

torch.nn.
LazyConvTranspose2d

aten::conv_
transpose2d

aten::
convolution

aten::conv_transpose2d(const Tensor& input_, const Tensor& weight, ... )

    auto output = at::convolution(input, ...);

    return is_batched ? output : output.squeeze(0);

aten::conv2d(const Tensor& input_, const Tensor& weight, ... ) 

auto output = at::convolution(input, ...);

return is_batched ? output : output.squeeze(0);

…

…

…

…

cudaLaunch
Kernel

cudaLaunch
Kernel

Fig. 4. A Demo Case of Matching APIs Pairs with Context Information

4.5 API matcher
The API matcher first receives context information from the dynamic profiler and static analyzer
(i.e., analogous function groups and API call stacks) and matches analogous API pairs based on
context similarity and signature similarity [33]. Subsequently, it checks the arguments of analogous
API functions and discards the API pairs with unsolvable argument mismatches, which renders the
buggy code unusable in test case generation. For instance, the API functions Conv2d and LPPool2d

each have required arguments that are not included in the other, making Citadel unable to generate
a test case for one based on the code of the other, as shown in Fig. 5 ( 4 ). Consequently, this API
pair is considered to have encountered an argument mismatch and is discarded. Note that matching
and filtering API pairs in API matcher is a one-time process. The matched analogous API pairs can
be saved and reused in the test case generator.
Matching. For an API function 𝐴𝑆 , the call stacks obtained from the dynamic profiler include a set
of source code functions it calls during execution. The static analyzer indicates that some of these
functions share similar functionality and implementations to other source code functions. The API
matcher integrates these two parts of context information to obtain the execution context 𝐶𝑇𝑋𝑆 of
the API function:

𝐶𝑇𝑋𝑆 = {𝑓 ′1 , 𝑓 ′2 , ..., 𝑓 ′𝑚}
⋃

{𝑓 𝑆1 , 𝑓 𝑆2 , ..., 𝑓 𝑆𝑛 }

where 𝑓 ′𝑖 indicates the source code functions in the groups identified in the static analyzer and 𝑓 𝑆𝑗
represents other source code functions in the call stack that do not belong to any of the groups.
Similarly, we denote the execution context of another API function𝐴𝑇 as𝐶𝑇𝑋𝑇 . Note that Citadel
does not merely compare whether the two API call stacks are the same. When calculating the
𝑆𝑖𝑚𝐶𝑇𝑋 (𝐴𝑆 , 𝐴𝑇 ), if both APIs call source code functions from the same group, these functions will
be treated as one function because of their similar functionality and implementations. Such a design
enables Citadel to match APIs with similar underlying implementations but different call stacks.
The context similarity between 𝐴𝑆 and 𝐴𝑇 can be calculated by the Jaccard similarity coefficient:

𝑆𝑖𝑚𝐶𝑇𝑋 (𝐴𝑆 , 𝐴𝑇 ) =
|𝐶𝑇𝑋𝑆 ∩𝐶𝑇𝑋𝑇 |
|𝐶𝑇𝑋𝑆 ∪𝐶𝑇𝑋𝑇 |

Citadel uses the threshold 𝛽 to evaluate the context similarity between𝐴𝑆 and𝐴𝑇 and considers
the two APIs are similar when 𝑆𝑖𝑚𝐶𝑇𝑋 (𝐴𝑆 , 𝐴𝑇 ) exceeds 𝛽 . §5.4 explains the selection of the default
value of 𝛽 in detail.
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…

‘in_channels’ (#1), ‘out_chan-
nels’ (#2), and ‘kernel_size’ (#3), and the optional argument
set P o
S contains ‘stride’ 
norm_type

torch.nn.Conv2d (in_channels, out_channels, kernel_size, stride=1,  … )

‘in_channels’ (#1), ‘out_chan-

nels’ (#2), and ‘kernel_size’ (#3), and the optional argument

set P o

S contains ‘stride’ 

layer = torch.nn. Conv2d(512, 2048,1)

input = torch.rand([128, 512, 16, 16], …)

output = layer(input)

①

torch.nn.LazyConv2d (out_channels, kernel_size, stride=1, … )

layer = torch.nn. LazyConv2d(2048,1)

input = torch.rand([128, 512, 16, 16], …)

output = layer(input)

②

torch.nn.Conv3d (in_channels, out_channels, kernel_size, stride=1, … )

layer = torch.nn. Conv3d(512, 2048,1)

input = torch.rand([128, 512, 16, 16, 16], …)

output = layer(input)

③

torch.nn.LPPool2d (norm_type, kernel_size, stride=1, … ) ④

Fig. 5. Verifying API Pairs and Generating Cases

Fig. 4 illustrates a simplified process of matching Conv2d and LazyConvTranspose2dmentioned in our
motivation example via context information. Based on the records of the dynamic profiler (depicted
in the solid box), both APIs call the source code functions aten::convolution and cudaLaunchKernel.
For source code functions aten::conv2d and aten::conv_transpose2d, which are separately called
by Conv2d and LazyConvTranspose2d, they have been divided into one analogous function group by
the static analyzer and are considered as the same function when calculating 𝑆𝑖𝑚𝐶𝑇𝑋 . Note that
there are multiple differences in the call stacks of Conv2d and LazyConvTranspose2d, aten::conv2d
and aten::conv_transpose2d are two demo cases. Since both APIs call almost the same source
code functions, their Jaccard similarity coefficients are greater than 𝛽 , and we match them as a
context-similar API pair. In addition to context-similar API pairs, we supplement analogous API
pairs matched by the signature similarity calculated by DeepREL [33], which are publicly available.
Based on their experiment results, we select the top 20 API functions with the highest signature
similarity to one API as its analogous API functions.
Filtering. API matcher checks arguments of matched API functions to avoid argument mismatch
problems in the test case generator. For the source API 𝐴𝑆 , its arguments 𝑃𝑆 can be represented as:
𝑃𝑆 = 𝑃𝑟

𝑆

⋃
𝑃𝑜
𝑆
, where 𝑃𝑟

𝑆
refers to required arguments and 𝑃𝑜

𝑆
refers to optional arguments. Citadel

discards the API pair (𝐴𝑆 , 𝐴𝑇 ), iff 𝐴𝑆 and 𝐴𝑇 each contain required arguments 𝑝𝑟𝑖 and 𝑝
𝑟
𝑗 that are

not included in the other’s arguments set, which means that the test case of either API cannot
provide values of required arguments to the other API and generate new test cases.

The discarded API pairs satisfy the following:

(∃𝑝𝑟𝑖 ∈ 𝑃𝑟𝑆 , 𝑝
𝑟
𝑖 ∉ 𝑃𝑇 ) ∧ (∃𝑝𝑟𝑗 ∈ 𝑃𝑟𝑇 , 𝑝

𝑟
𝑗 ∉ 𝑃𝑆 )

Fig. 5 shows an example of verifying API arguments, where𝐴𝑆 is torch.nn.Conv2d( 1 ). Its required
argument set 𝑃𝑟

𝑆
includes ‘in_channels’, ‘out_channels’, and ‘kernel_size’, and the optional argument

set 𝑃𝑜
𝑆
contains ‘stride’ (default value is 1), etc. One of its analogous APIs, torch.nn.Conv3d, has the

same argument set, allowing the two APIs to generate test cases for each other in the generator and
pass the verification( 3 ). torch.nn.Lazyconv2d has required arguments ‘out_channels’ and ‘kernel_-
size’. The test code of Conv2d can bemodified by removing the first argument to generate test cases for
the target API LazyConv2d, which also passes the verification( 2 ). Unfortunately, torch.nn.LPPool2d
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has a required argument ‘norm_type’ that are not present in Conv2d, and LPPool2d lacks required
arguments ‘in_channels’ and ‘out_channels’ ( 4 ). Due to the lack of values of required arguments
(i.e., ‘in_channels’, ‘out_channels’, and ‘norm_type’), Citadel cannot generate new test cases for
either API based on the test cases of the other, therefore Citadel discards the API pair that consists
of LPPool2d and Conv2d.

4.6 Test Case Generator
Given a verified API pair of 𝐴𝑆 and 𝐴𝑇 , the test case generator synthesizes new test cases 𝐶𝑇 for
the target API based on the collected buggy code 𝐶𝑆 of the problematic API 𝐴𝑆 (i.e., source API).
As shown in the case of Fig. 2, the generator can adaptively adjust the code of 𝐶𝑇 to resolve two
kinds of differences (if any) between APIs, namely argument difference and dimension difference,
thereby ensuring that the newly generated test cases are executable.
Argument Difference. When the argument set of the source API 𝐴𝑆 includes arguments not
present in the target API 𝐴𝑇 (e.g., Conv2d and LazyConv2d in Fig. 5), an argument difference arises.
To solve this problem, the test case generator modifies the test case 𝐶𝑇 by removing irrelevant
arguments to make it executable for 𝐴𝑇 . The dashed box in Fig. 5 provides an example of resolving
arguments difference ( 2 ). The argument set of the source API Conv2d contains the first argument ‘in_-
channels’ that the target API LazyConv2d does not have. Therefore, the generator discards the value
‘512’ corresponding to the first argument and keeps only the values ‘2048’ and ‘1’ corresponding to
other arguments (marked by green). Additionally, Fig. 2 provides another example that removes
the argument ‘in_channel=512’ in generating test cases for LazyConvTranspose2d.
Dimension Difference. As mentioned previously, the DL framework provides a series of APIs for
inputs of varying dimensions (e.g, Conv2d and Conv3d), typically sharing similar implementations
and susceptibility to similar bugs [6]. However, the existing methods encounter challenges in con-
structing test cases for these API functions due to the different dimensions of their arguments [33].
To resolve the dimension difference, the test case generator first obtains the API signatures through
open-source libraries (e.g., the ‘inspect’ library in Python) and identifies the dimension-related
arguments from signatures. It then dynamically adjusts the test code by increasing or decreasing
the dimensions of argument values based on the dimension information of the API signatures
of the source and target APIs, and generates test cases for those API functions. Fig. 5 shows an
example of resolving dimension difference and generating available test cases for Conv3d ( 3 ). The
API signature shows that the ‘input’ of Conv3d and Conv2d is dimension-related, and the ‘input’ of
Conv2d is a 4-dimensional tuple, and the ‘input’ of Conv3d should be a 5-dimensional tuple. The
generator recognizes such a dimension difference and expands the 4-dimension tuple received
by Conv2d to a 5-dimension tuple to adjust the input dimensions (marked in green) and generates
executable test cases for Conv3d.
Citadel adaptively generates test cases for various target APIs based on the bug detected in

the source API Conv2d and finally identifies status bugs on Conv3d and LazyConv2d, which has been
reported to the developers [19].

4.7 Test Case Evaluator
Existing work usually considers the execution results of another API function as a pseudo test oracle
and checks whether two API functions produce equal results to detect potential bugs [33, 40, 66].
However, they cannot detect performance bugs due to the difficulty of obtaining test oracles for the
runtime overhead of APIs. To effectively identify API bugs regardless of bug types, the evaluator
considers the buggy behavior of the source test case𝐶𝑆 as the test oracle and observes whether the
new test case 𝐶𝑇 has the same buggy behavior. Specifically, the evaluator identifies three types of
bugs on 𝐴𝑇 as follows.
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• Status bug arises when 𝐶𝑇 throws the identical exception as the source case 𝐶𝑆 . The evaluator
collects exception details, and if 𝐶𝑇 throws the same exception as the original bug case 𝐶𝑆 , it is
considered that 𝐴𝑇 has a status bug.
• Value bug arises when 𝐶𝑇 generates the same specific numerical errors (e.g., NaN) as 𝐶𝑆 . The
evaluator logs the outputs of test cases, and if 𝐶𝑇 produces anomalous values matching those
described in the bug report of 𝐴𝑆 , 𝐴𝑇 is deemed to have a value bug.
• Performance bug arises from an underlying implementation or optimization error, leading to an
unexpectedly high overhead on APIs. To detect performance bugs, Citadel calculates the expected
overhead by leveraging the bug report of𝐴𝑆 and records the actual runtime overhead. If𝐶𝑇 exhibits
unexpected overhead identical to that described in the bug report of the problematic API 𝐴𝑆 (e.g., a
time overhead greater than expected), 𝐴𝑇 is considered to have a performance bug. Take the case
in Fig. 2 as an example, the bug report of Conv2d indicates that the performance bug causes the
group convolution to exhibit a greater time cost than implementing these convolutional layers
individually, which is confirmed by the developers. Leveraging such an anomalous behavior as the
test oracle, Citadel reveals that LazyConvTranspose2d also experiences a higher time overhead under
the group setting than implementing LazyConvTranspose2d layers individually, thereby identifying
the performance bug. Please note that this does not imply that LazyConvTranspose2d incurs the same
cost as Conv2d in the original bug report, but rather that both achieve costs exceeding the cost of
individual execution (i.e., the expected overhead).

5 EVALUATION
In this section, we aim to answer the following research questions.
RQ1: How effective is Citadel in detecting real-world bugs?
RQ2: How efficient is Citadel in detecting real-world bugs?
RQ3:What is the impact of different configurable parameters in Citadel?

5.1 Setup
Baseline and Metric:We use three state-of-the-art open-sourced testing tools for comparison,
namely DocTer [81], DeepREL [33] and TitanFuzz [31]. For the data not shown in their paper (e.g.,
the number of cases generated by a complete execution), we obtain it by running their open-source
code. Citadel mainly compared with baselines from three metrics:
• Ratio of test cases that can trigger bugs. This metric is calculated by dividing the number of cases
that can trigger or expose bugs by the total number of generated cases, which can reflect the
efficiency of a test approach in generating test cases and detecting bugs. Note that if the baselines
do not provide the number of valid cases that can trigger bugs, we will use the number of all bug
candidate cases (i.e., the upper bound of valid cases, which may contain a significant number of
duplicates) to estimate this metric for the baselines, although this may overestimate the baselines’
results on this metric.
• Average time to detect bugs. Following the prior work [28, 90], we use the metric of average time
to detect bugs to compare the bug detection efficiency of each method. Specifically, we record the
time taken by each method to conduct a complete test run and subsequently divide it by the number
of detected bugs in the execution. Note that this metric explicitly excludes any preprocessing time,
such as API matching in CITADEL and DeepREL or constraint construction in DocTer, since these
steps often involve manual effort or produce static results that can be reused in multiple tests.
Since the manual cost of verifying which thousands of cases generated by baselines are real bugs is
too high, for the baseline method, we directly use the total number of bugs reported in their papers.
Note that the fuzzy-based baselines can explore more behaviors and trigger bugs through multiple
executions. We actually calculate the upper bound of baselines’ performance in this metric, which
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Table 1. Summary of Detected API Bugs on PyTorch and TensorFlow

Framework #Total #Rejected #Duplicated #New #Confirmed

Total Stat . Val . Perf . Total Stat . Val . Perf . Total Stat . Val . Perf . Total Stat . Val . Perf . Total Stat . Val . Perf .

PyTorch 77 52 15 10 1 0 1 0 18 16 2 0 58 36 12 10 36 21 7 8
TensorFlow 74 51 20 3 2 2 0 0 6 6 0 0 66 43 20 3 56 36 17 3

Total 151 103 35 13 3 2 1 0 24 22 2 0 124 79 32 13 92 57 24 11

is the time of a complete execution divided by the total number of bugs they report. In contrast,
Citadel exploits existing bug reports to discover API bugs without fuzzy generation, and all bugs
reported by Citadel are discovered in one execution.
• Number of covered APIs. In prior work, DocTer [81] reports the number of APIs that successfully
extract constraints as the number of covered APIs, and DeepREL [33] counts APIs invoked by their
‘API_Match_Verifier’, which are successfully included in equivalent pairs. Following the prior work,
we report the number of APIs matched and verified in our API matcher. In addition, we also count
the number of analogous APIs covered by the collected bug cases used in our experiments.
Collected Issues and Context Information. In the experiment, we separately collect and verify
258 and 288 valid bug cases from the latest 30,000 issues of PyTorch and the latest 20,000 issues of
TensorFlow, as one input to Citadel. This process takes approximately 3 weeks per participant.
Among them, the problematic APIs in 172 cases (i.e., 104 PyTorch cases and 68 TensorFlow cases)
have matched analogous APIs and are used to generate new test cases in the test case generator.
These bug cases are publicly available in our repository [17]. In addition, the dynamic profiler
constructs test cases for 999 PyTorch APIs and 2,076 TensorFlow APIs and records their call stacks.
Based on the experimental results of prior work [56, 72], we set 𝛼1 = 0.8 as the threshold of input
and output arguments similarity. To strictly judge analogous source code functions and reduce
the impact of false positives on subsequent API matching, we set 𝛼2 = 0.8 as the threshold for
callees similarity. If both the arguments similarity and callees similarity of two functions exceed the
thresholds, the two source code functions are judged as analogous functions. The static analyzer
separately selects 944 and 7,028 functions in PyTorch and TensorFlow source code that share
similarity with at least one other function from the source code and divides them into 2,467 groups.
The call stacks and analogous function groups are input into the API matcher as context information.
Software and Hardware: The prototype of Citadel is implemented on top of Python 3.9. In our
experiments, Citadel test and identify bugs across PyTorch 1.7.0 to 1.13.1 and TensorFlow 2.1.0
to 2.13.0. All experiments are conducted on a server with Intel(R) Xeon(R) Gold 6226R 2.90GHz
16-core processors, 130 GB of RAM, and an NVIDIA 3090 GPU running on Ubuntu 22.04.

5.2 Effectiveness in Detecting Bugs
Experiment Design: To evaluate the effectiveness of Citadel in detecting real-world bugs, we
conduct experiments on the PyTorch and TensorFlow frameworks and report all detected API
bugs to developers for confirmation. Our experiment counts the number of API bugs detected by
Citadel, that is, when calling an API with certain inputs triggers one bug, Citadel will consider
that an API bug is detected. In addition, aligned to prior work [81], different inputs triggering the
same unexpected behavior on one API will only be counted once. During this process, we record
the states of reports, such as confirmed or rejected, and the bug types. Furthermore, following the
setting of previous work [33, 80], we collect the number of verified pairs and covered APIs in the
API matcher of Citadel. Note that Citadel uses the test code in existing bug reports to generate
new test cases, and the number of APIs tested in the experiment is related to the collected bug
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Fig. 6. Comparison of API Coverage and Matched API Pairs

Table 2. Comparison of Citadel and Baselines Result (Brackets mark the APIs and API Pairs Covered by the

Collected Bug Cases)

Approach Framework API Coverage Case Generation Average Time To
Detect Bugs (min)#API #Pairs #Valid #Total Ratio (%)

DocTer
PyTorch 498 \ 45 17,227 0.26 107.16

TensorFlow 911 \ 206 16,632 1.24 25.98

Total 1,409 \ 251 33,859 0.74 41.98

DeepREL
PyTorch 1,071 4,290 2,001 77,662 2.58 40.63

TensorFlow 1,902 8,808 2,052 252,533 0.81 64.71

Total 2,973 13,098 4,053 330,195 1.23 58.62

TitanFuzz
PyTorch 1,329 \ 2,406 158,185 1.52 43.05

TensorFlow 2,215 \ 11,235 191,862 5.86 101.96

Total 3,544 \ 13,641 350,047 3.90 68.43

Citadel
PyTorch 1,436 (529) 8,079(797) 82 196 41.84 4.83

TensorFlow 5,380 (675) 28,268 (1,387) 61 208 29.33 6.61

Total 6,816 (1,204) 36,347 (2,184) 143 404 35.40 5.70

cases. We also report the number of tested APIs using the collected 172 bug cases. How to collect
more bug cases to fully utilize the matched API pairs and test more APIs will be a future direction.
Results: Table 1 summarizes the three types of bugs detected by Citadel, namely ‘Stat.’, ‘Val.’, and
‘Perf.’ (i.e., status, value, and performance bugs). Following the prior work [31, 33, 81], the number
of bugs reported here is the number of abnormal behaviors in different APIs (i.e., API bugs), rather
than the number of independent implementation defects. The first column of Table 1 displays the
DL framework and the following columns indicate the number of all detected API bugs (‘#Total’),
API bugs that developers do not plan to work on (‘#Rejected’), API bugs that have been reported
in existing reports (‘#Duplicated’), new API bugs that have not been reported (‘#New’), new API
bugs that have been confirmed (‘#Confirmed’). In addition, Table 2 presents a comparison between
Citadel and baselines in the three metrics in §5.1. The first column shows four test approaches in
comparison and the second column displays the DL framework. The columns ‘#API’ and ‘#Pairs’
show the number of covered APIs and matched API pairs in each approach, corresponding to the
‘Number of covered APIs’ in §5.1. In addition, Fig. 6 uses Venn diagrams to present the comparison
of the number of covered APIs and matched API pairs between Citadel and the baselines. Since
we could not find specifics on the APIs and pairs covered by DeepREL in its repository, we use the
data collected from its full execution.

, Vol. 1, No. 1, Article . Publication date: October 2025.



Citadel : Context Similarity Based Deep Learning Framework Bug Finding 17

Analysis: The results in Table 1 illustrate the effectiveness of Citadel in detecting various types
of real-world bugs. Citadel generates test cases based on a total of 172 real bugs collected from
GitHub repositories and successfully detects 151 API bugs on PyTorch and TensorFlow, out of
which only 3 are rejected by developers. These cases show the same anomalous behaviors (e.g.,
NaN) as the source problematic API, but developers have no plans to fix them. The following
‘Rejected Case’ provides a detailed analysis of a rejected case. Of the remaining 148 bugs, 24 are
duplicates of existing bug reports and the remaining 124 are unreported API bugs, 92 of which
have been confirmed by developers. Excluding rejected cases, Citadel detected 101 status bugs,
34 value bugs, and 13 performance bugs, demonstrating its effectiveness in detecting different
types of DL framework bugs. Furthermore, we analyze the patches provided by developers in
response to our bug reports and count the number of API bugs that share the same patch as the
source API bug. In PyTorch, eight of our issue reports receive official patches (including twelve API
bugs), while the patches in six reports indicate that seven newly reported API bugs share the same
underlying implementation errors with their corresponding source bugs. In addition, due to the
inactivity of the TensorFlow community, none of our bug reports have received patches, making this
analysis impossible. This finding highlights a characteristic of our context similarity-based method
in Citadel, i.e., it could identify multiple API bugs caused by the same underlying implementation
error. Moreover, compared to other types of bugs, the number of detected performance bugs is
relatively small. Our manual analysis of the PyTorch and TensorFlow repositories reveals that
the reported performance bugs are infrequent. Take the PyTorch framework as an example, only
approximately 300 issues are labeled as ‘performance’ out of over 10,000 open issues. Moreover,
the limited number of issues with reproducible code poses a challenge for Citadel to gather a
significant amount of code related to performance bugs in DL framework repositories. Finally,
8/172 real bugs that Citadel collects to generate test cases for the matched API pairs are related to
performance. Based on these collected performance bugs, Citadel detects 13 new performance
bugs, and 11 of them have been confirmed.
The API matcher of Citadel covers a total of 1,436 PyTorch APIs and 5,380 TensorFlow APIs,

which is 365 more PyTorch APIs and 3,478 more TensorFlow APIs than DeepREL’s ‘API_Match_-
Verifier’ and significantly more than 498 PyTorch APIs and 911 TensorFlow APIs covered by
DocTer’s constraints. Fig. 6 show the comparison of API and API pairs covered by Citadel and
baselines, respectively. In addition, the experiments based on the collected bug cases cover 529
PyTorch APIs and 675 TensorFlow APIs, among which 221 and 338, respectively, are not covered by
the baseline methods. Citadel successfully identifies one PyTorch bug and eight TensorFlow bugs
on these previously uncovered APIs. Furthermore, the corresponding test cases cover 797 and 1,387
analogous API pairs on PyTorch and TensorFlow, of which 574 and 1,154 are not covered by the
baselines. Note that, due to the limited number of collected bug cases, the experiment currently only
uses a small subset of matched analogous APIs and API pairs. Exploring techniques to automatically
annotate and efficiently collect a broader set of bug cases to further enhance the detection effect of
Citadel will be our future research direction (§7). The newly covered API pairs enable Citadel to
successfully detect 49 API bugs on PyTorch and TensorFlow, comprising 41 status bugs, 3 value
bugs, and 5 performance bugs, which demonstrates the effectiveness of the newly covered APIs
and API pairs of Citadel in detecting bugs. For example, Citadel newly matches the API pair
of Conv2d and LazyConvTranspose2d via the context similarity and identifies the performance bug in
LazyConvTranspose2d (Fig. 2). The API pair of ReLU6 and HardTanh in the following case study is also
newly covered in Citadel.
Bug Case 1: In the PyTorch 1.13.1 release, Citadel detects a performance bug on Hardtanh API
function, and Fig. 7 presents how Citadel identify this performance bug. When this bug occurs,
the ‘inplace’ argument in Hardtanh can not optimize the memory overhead, and no matter ‘inplace’
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11    model_1 = build_model( torch.nn.ReLU6( inplace = False ), …  )

12    model_2 = build_model( torch.nn.ReLU6( inplace = True ), …  )

13    improved_perf = allocated_memory(model_1)

- allocated_memory(model_2 )

01    model_1 = build_model( torch.nn.Hardtanh( inplace = False ), … )

02    model_2 = build_model( torch.nn.Hardtanh( inplace = True ), … )

03    improved_perf = allocated_memory(model_1)

- allocated_memory(model_2)
Synthesis New

Test Cases

①

Inplace failes to save memory usage !

improved_perf == 0

(b) Confirmed bug on ReLU6

Unable to optimize memory overhead!   

improved_perf == 0
Triggering
New Bugs

②

(a) New bug on Hardtanh

Fig. 7. Performance Bug on Hardtanh

is assigned as ‘True’ or ‘False’, the GPU memory allocated by the model with Hardtanh remains
constant, as shown in Lines 1-3 in Fig. 7(a). Nevertheless, in the 1.8.0 and 1.9.0 versions, this argument
can effectively decrease memory usage (e.g., reduce from 40.43 MB to 21.82 MB). To discover this
performance bug, Citadel first matches ReLU6 and Hardtanh as analogous API functions. Then, based
on a collected bug on ReLU6, Citadel synthesizes and executes a test case for Hardtanh ( 1 ). The
bug report of ReLU6 shows that the model with ReLU6 allocates the same amount of GPU memory
regardless of whether ‘inplace’ is enabled, and the variable ‘improved_perf’ in Line 13 of Fig. 7(b)
is zero. Citadel leverages the anomalous behavior of enabling the ‘inplace’ not decreasing the
memory overhead as the test oracle and generates a new test case, as shown in Line 3 of Fig. 7(a).
Finally, Citadel identifies the performance bug on Hardtanh ( 2 ), and the developers have confirmed
this bug and labeled it as ‘high priority’ [15].
Bug Case 2: Citadel detects a status bug on the tensorflow.compat.v1.gather in TensorFlow
2.14.0 release. When the last dimension of the ‘params’ argument takes a specific value (e.g.,
14), tf.compat.v1.gather will crash directly on the GPU without throwing any error message. To
detect this status bug, Citadel first matches tensorflow.compat.v1.gather with the source API
tensorflow.raw_ops.Gather based on context similarity (over 0.9). Subsequently, Citadel analyzes
the arguments of the two API functions and synthesizes a new test case using the collected bug
case on the source API for the analogous API v1.gather, as shown in Fig. 8 ( 1 ). The new test case
on v1.gather has crashed, exhibiting the same anomalous behavior as observed in raw_ops.Gather

( 2 ). Finally, Citadel identifies the new status bug on v1.gather. The newly discovered bug has
been reported and confirmed by developers [13].
Rejected Case: Although Citadel effectively identifies API bugs based on whether analogous
APIs exhibit the same anomalous behavior as the problematic API, several cases are still rejected
by developers. Note that, these rejected cases still exhibit anomalous behaviors, but developers
consider them unimportant and have no plans to fix or work on them. Here, we present an example.
Citadel encounters a rejected case when detecting a bug on the torch.logdet API. During testing,
Citadel matches torch.logdet with torch.det and then constructs test cases for the target API
logdet based on a buggy code of the source API det. When executing the test cases, Citadel finds
that both APIs have abnormal and dangerous output value ‘NaN’ (i.e., not a number) which could
further affect subsequent calculations and raise dangerous behaviors [62]. However, developers
suggest that the abnormal ‘NaN’ output on logdet is due to the calculation characteristics of this
API. When the input matrix is close to being non-invertible (e.g., very small singular values), then
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11 params = tf.saturate_cast([13, 15, 7, 13, 14],…)

12    indices = tf.saturate_cast([11, 12, 6, 15, 11, 3 ],…)

13    output2 = tf.raw_ops.Gather(params=params, indices=indices,…)

01 params = tf.saturate_cast([13, 15, 7, 13, 14],…)

02    indices = tf.saturate_cast([11, 12, 6, 15, 11, 3 ],…)

03    output1 = tf.compat.v1.gather(params=params, indices=indices,…)

Synthesis New
Test Cases

①

Crash on GPU! 

(b) Confirmed bug on ‘raw_ops.Gather’

Crash on GPU! 

Triggering
New Bugs

②

(a) New bug on ‘compat.v1.gather’

Fig. 8. Crash on tf.compat.v1.gather

these APIs may return incorrect results [8]. Rejected cases show the limitations of Citadel in
identifying bugs on APIs that are allowed to exhibit anomalous behaviors. How to identify and
filter these unimportant anomalous behaviors to reduce rejected cases will be our future direction.
Answer to RQ1: Citadel can effectively utilize the bug reports of source APIs to identify API
bugs in their analogous API functions. In the experiment, Citadel leverages 172 bug cases
to detect 151 API bugs, among which 124 are newly reported and 13 are performance bugs
that existing methods fail to detect. These results demonstrate the effectiveness of Citadel in
finding a wide range of real-world bugs. Furthermore, 49 of these detected bugs originate
from analogous API pairs that existing approaches cannot match, while 9 bugs are from APIs
that existing methods do not cover. These results highlight the contribution of the APIs and
API pairs newly covered by Citadel in enhancing bug detection.

5.3 Efficiency in Detecting Bugs
Experiment Design and Results: To evaluate the efficiency of Citadel in generating test cases
and triggering bugs, we conduct experiments to calculate and compare the Ratio of test cases that
can trigger bugs and Average time to detect bugs of Citadel and baseline methods. Specifically,
we execute the complete procedure of Citadel and three baselines to record the total number
of generated test cases and the number of test cases that can trigger bugs, and the time cost of
testing, as described in §5.1. As the baselines may not save some test cases or inputs, to ensure
that we do not mistakenly count such excluded test cases, we directly record the total number of
generated test files as the total number of test cases. The experimental results are shown in Table 2.
The column ‘#Valid’ shows the number of generated cases that can trigger bugs and the column
‘#Total’ denotes the overall number of generated cases in one complete execution. The column
‘Ratio’ displays the ratio of the number of cases that triggered bugs to the total number of generated
test cases, corresponding to the ‘Ratio of test cases that can trigger bugs’ in §5.1. The last column
of Table 2 displays the ‘Average time to detect bugs’ of each approach.
Analysis: The results in Table 2 demonstrate the efficiency of Citadel in generating test cases to
trigger bugs. In the complete execution of baselines, DocTer generates 33,859 test files on PyTorch
and TensorFlow in a complete execution, and only 251 of them (0.74% of the total) are valid cases.
The testing process on two frameworks lasts over 99 hours, and the average time to detect bugs in
DocTer is 41.98 minutes. On the PyTorch framework, DeepREL spends over 27 hours generating
a total of 77,662 test files and marks 2,001 of them as ‘can trigger bugs’, and the valid test case
ratio is 2.58%. DeepREL does not provide the test cases that can trigger bugs or the corresponding
numbers on TensorFlow. Therefore, we count the number of candidate bugs it detects (the upper
bound of possible bug cases) in Table 2. DeepREL spends over 150 hours testing two frameworks,
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and at most 1.23% of all 330,195 generated test files can trigger bugs. The average time to detect
bugs of DeepREL is 58.62 minutes. TitanFuzz spends over 72 hours generating 350,047 cases on two
DL frameworks, 3.90% of which are candidates and can catch valuable buggy behaviors or trigger
bugs. The average time of TitanFuzz to detect bugs is 68.43 minutes. By contrast, Citadel average
spends 5.70 minutes to detect one bug, which is only 13.57%, 9.72%, and 8.33% of the average time
cost of DocTer, DeepREL, and TitanFuzz, respectively. Citadel is over 10x more time efficient than
DeepREL and TitanFuzz in detecting bugs. In testing, Citadel generates a total of 404 test files
based on 172 collected bugs within 15 hours, and 143 of them can be used to discover bugs, and the
ratio reaches 35.40%. Note that quite a part of the generated test files can be used to detect bugs for
multiple analogous API functions at the same time, which improves the efficiency of Citadel in
generating test cases and detecting bugs. In addition, our experiments show that the time from
when Citadel starts testing to when it triggers the first bug is within 3 minutes, while baselines
usually tend to take 8 minutes or more. Citadel, therefore, outranks three baselines in generating
and utilizing test cases to detect bugs efficiently.

Existing bug-finding tools use various techniques, such as fuzzing, to explore and discover new
anomalous behaviors and detect bugs. As a bug-finding tool orthogonal to existing tools, Citadel
aims to use reported bugs to discover API bugs on analogous APIs, therefore, it can be used to
enhance the effectiveness and efficiency of bug detection. In the experiment, Citadel leverages 13
bug cases from the baseline method reports and successfully detects 18 API bugs within 3 hours,
11 of which are not reported by the baselines. This demonstrates the potential of collaboration
between Citadel and existing bug-finding tools to accelerate DL framework bug detection.
Answer to RQ2: Citadel can efficiently generate test cases to trigger API bugs. In the
experiments, 35.40% of the test cases generated by Citadel can trigger bugs, which is over
9.08 times the bug triggering ratio of the baseline methods. Furthermore, the average time to
detect bugs of Citadel is 5.7 minutes, while baseline methods need at least 41.98 minutes,
demonstrating the efficiency of Citadel in detecting real-world bugs.

5.4 Impacts of Configurable Parameter
Experiment Design andResults:Citadel leverages the built-in threshold 𝛽 to determine whether
two API functions share context similarity. To figure out the impacts of the threshold 𝛽 and select
its default value in Citadel, we conduct experiments with different 𝛽 values from 0.1 to 0.9
in increments of 0.1. Fig. 9 show the results of these experiments on PyTorch and TensorFlow
respectively. The X-axis represents the threshold values. As shown in the legend, the orange and red
lines separately indicate the number of API functions covered by context similarity and the number
of detected bugs. The blue line illustrates the ratio of the number of target APIs that successfully
trigger bugs to the total number of target APIs matched by context similarity (for convenience,
we refer to it as effective target API ratio). A higher effective target API ratio means that API pairs
matched by context similarity are more effective in detecting bugs. Numbers in different colors on
the Y-axis show the values of corresponding lines.
Analysis: Fig. 9 illustrates the impact of different values of 𝛽 on the detection results of Citadel
on different frameworks. Since modifying 𝛽 has similar effects on the testing results of different
frameworks, we focus our detailed analysis on the impact of 𝛽 on PyTorch in this section.
When 𝛽 is set to 0.6 to 0.8, Citadel can achieve good detection results. A higher 𝛽 value leads

to more stringent evaluations of API pairs sharing context similarity, resulting in a reduction
in the number of covered API functions, as shown in Fig. 9(a). Increasing the threshold value
from 0.7 to 0.9 results in a sharp decline in the number of covered API functions from 638 to
465. Simultaneously, the bug detection ability of Citadel also declines significantly. When 𝛽 is
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(a) PyTorch (b) TensorFlow

Fig. 9. Impacts of Different 𝛽 Values on PyTorch and TensorFlow

0.4, Citadel can detect 55 bugs on PyTorch through context-similar API pairs, and this number
decreases to only 24 when 𝛽 increases to 0.9. However, the increase in the 𝛽 can improve the
effectiveness of matched context-similar API functions in triggering bugs. When the 𝛽 increases
from 0.4 to 0.9, the effective target API ratio on PyTorch rises from 16.87% to 66.67%. Therefore,
there is a trade-off between the ratio of effective target API functions and the number of detected
bugs and covered API functions. Using a higher threshold can retain API pairs that have more
similar contexts, but other API pairs that have the potential to trigger bugs will also be discarded,
resulting in a degradation of the overall testing effectiveness. Finally, we set the default value of 𝛽
to 0.6 on PyTorch and 0.8 on TensorFlow in Citadel to maximize its API coverage, effectiveness in
bug detection, and effective target API ratio.
Answer to RQ3: The configurable parameter 𝛽 has a significant impact on the bug detection
and API coverage of Citadel. A too large 𝛽 will discard API pairs that may trigger similar
bugs, resulting in a degradation in the effectiveness of bug detection. Citadel selects 𝛽 = 0.6
on PyTorch and 𝛽 = 0.8 on TensorFlow to maximize the effectiveness of bug detection.

6 RELATEDWORK
In this paper, we propose Citadel that matches analogous DL framework APIs according to context
similarity and argument similarity and generates test cases based on real-world bugs. It is highly
related to DL framework testing and code similarity measurement.
DL Framework Testing. Researchers have proposed various methods to test DL framework (e.g.,
PyTorch and TensorFlow) through model-level methods [39, 58, 77] and API-level methods [33, 76,
81], which have been comprehensively introduced in §2.2. In addition, existing works also design
elaborated metamorphic relations to validate the correctness of DL framework implementation [34,
75]. FreeFuzz [80] successfully detects one performance bug using metamorphic testing techniques.
However, limited by its metamorphic relation, it can only test framework behaviors related to tensor
types and cannot effectively identify other diverse performance bugs (e.g., the LazyConvTranspose2d

bug in Fig. 2 and the Hardtanh bug in Fig. 7). Recently, Zhang et al. [88] propose the test tool ‘Predoo’,
which performs a fine-grained evaluation of the shape variable input and error of 7 operators of the
DL framework. Researchers also focus on the security problem of DL frameworks. SkipFuzz [46]
uses active learning to learn the input constraints of different library API functions and generates
valid test inputs for TensorFlow and PyTorch. It had finally identified 43 crashes on DL frameworks,
including 13 CVEs assigned. IvySyn [29] constructs code blocks by DL framework APIs based on
a set of offending inputs that trigger memory safety errors in the underlying implementation of
DL frameworks (e.g., in C/C++ program language) to trigger security vulnerabilities. In addition,
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researchers also detect bugs in other DL underlying libraries such as DL compilers. Liu et al. [52]
design a testing method for the ML compiler framework TVM. This method is guided by coverage
feedback to mutate the low-level intermediate representation of TVM to achieve more effective
fuzzing testing. Shen et al. [70] transfer the knowledge of DL framework fuzzers (e.g., DocTer and
DeepRel) to generate effective test cases for diverse DL compiler operators and detect crashes
and inconsistencies. Shiri et al. [71] extract corner case patterns from historical issue reports
to guide fuzzers in generating test cases and finding bugs more effectively. Their method uses
differential testing and crashes to construct test oracles and effectively identifies status and value
bugs. However, this design still suffers from the limitation described in §3, namely, the lack of
capability of detecting performance bugs. To effectively test rapidly iterating DL frameworks,
Xie et al. [82] built upon previous work [76, 81] to design a continuous testing framework for
efficiently discovering regression bugs and masked bugs. Recently, Zhang et al. [87] survey the
testing methods on various DL libraries and point out the challenges of future testing research.

Different from the above methods, Citadel is built on the concept of code similarity measurement
and real-world bugs confirmed by developers. Citadel focuses on DL framework bugs and can
leverage existing bug reports on one API to efficiently exploit bugs on its analogous APIs.
Code Similarity Measurement. Existing work has a variety of code similarity measurement and
code clone detection methods. These methods can be divided into static and dynamic according to
whether the test code needs to be executed. The static methodsmainly includemetrics-based [36, 63],
text-based [53, 68], token-based [69, 74], AST-based [43, 85], and graph-level methods [26, 30].
Among them, the AST and graph-level methods can comprehensively understand the syntax and
capture the relationship of the function calls between code blocks, therefore, they have better
detection effects but greater overhead than other methods. Existing dynamic methods propose
that the functional similarity between programs can be evaluated from the perspectives of input
and output [35, 72], abstract memory state [48], etc. Recently, Maertens et al. [54] propose an
open-source tool that supports a broad range of programming languages (e.g., C, Java, Python, go).
Zhang et al. [89] present an AST-assisted approach for generalizable neural clone detection to find
clones in codebases reflecting industry practices. Wang et al. [78] design a code clone detection
tool based on the semantic token which enhances the detection capability by complementing
the traditional token with semantic information. Our work mainly combines the concept of code
similarity measurement into DL framework testing. Citadel matches context-similar APIs based
on the similarity of their context information and leverages the bug reports on one API to efficiently
find new API bugs on its analogous APIs.

7 DISCUSSION
Discussion. ❶ Impact of Collected Bug Cases: Different from existing fuzzing methods [31, 81],
which directly generate or mutate test cases for individual APIs, Citadel generates new test cases
and finds API bugs for analogous APIs based on collected bug cases. Note that the detection results
of Citadel are inherently dependent on the collected bug cases. The more extensive and diverse
problematic APIs these cases encompass, the more comprehensive the API coverage Citadel
can achieve during detection, leading to the discovery of additional previously unknown bugs.
Conversely, a limited number of bug cases concentrated on specific APIs constrain Citadel to
testing only a narrow subset of analogous APIs. Although the experiments in §5.2 successfully
cover 1,204 DL framework APIs and detect 124 unreported API bugs based on the 172 collected
bug cases, demonstrating the effectiveness and efficiency of Citadel, this still represents only
a small fraction of the matched analogous APIs, as shown in Table 2. Developing techniques to
automatically collect and annotate a more diverse set of bug cases, thereby finding bugs on a
broader range of APIs, is a promising future research direction. ❷ Scope of Citadel: As a testing
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tool orthogonal to existing bug-finding approaches, rather than searching for unknown API bugs
from scratch, Citadel leverages a known bug in one API to uncover bugs in its similar APIs. Note
that the API bugs discovered by Citadel may stem from the same underlying implementation
errors as the known API bugs. However, this does not diminish the value of Citadel. Effectively
identifying potential API bugs is crucial for the development and maintenance of DL frameworks.
For framework users, Citadel could promptly recognize APIs exhibiting abnormal behavior, thereby
preventing users from misusing these buggy APIs and mitigating potential security risks in users’
models and software. For framework developers, Citadel efficiently reveals abnormal behaviors
across a series of APIs that share similar underlying implementations, providing developers a more
comprehensive debugging perspective, helping them infer the root cause and efficiently localize
and fix bugs. Moreover, the experiment results in §5.3 demonstrate that Citadel utilizes 13 bug
cases reported by baselines to detect 18 API bugs within three hours, 11 of which are previously
unreported, demonstrating the efficiency and practicality of Citadel. These findings highlight that
Citadel is not a replacement for existing methods, but rather a complement to existing testing
tools. It can effectively leverage individual bug reports and improve the effectiveness and efficiency
of the entire bug detection and repair process.
Citadel Enhancement. ❶ Automated Verification and Annotation: Currently, Citadel receives
the bug case list as one of its inputs, which requires manual intervention. How to automatically
verify and annotate bug cases (e.g., using code models) is a potential future direction to enhance
Citadel’s efficiency. ❷ Performance Bug Reports: Citadel presently handles performance bug
reports that provide code snippets to estimate expected overhead. A valuable future direction would
involve automating the calculation of expected overhead or extracting expected behavior from bug
reports described in natural language or images [5]. ❸ Fault Localization: Some API bugs may
share a common root cause, and a single effective patch can potentially resolve multiple related
issues [3]. The detection results and corresponding fix patches reported in prior work [1, 81] further
support this observation. Note that Citadel, like existing bug-finding tools [33, 81], is designed for
bug detection rather than faulty localization or program repair. As such, identifying the root causes
of API bugs lies outside the scope of this testing work. We have reported the number of duplicate
bugs and the number of API bugs that share the same implementation errors as the source bugs
in §5.2. However, since our reports for TensorFlow API bugs currently do not receive any patches,
we are unable to conduct the analysis on this framework. We estimate that API bugs with shared
underlying implementations also exist in this framework. Therefore, designing error localization
methods for automated fault localization remains a valuable direction for future research, which
could effectively reduce the debugging workload for DL framework developers (e.g., TensorFlow)
and improve bug repair efficiency. ❹ Code Similarity Measurement: To mitigate false positives
in the static analyzer, Citadel selects strict thresholds to judge analogous source code functions
based on the experimental results of prior work [56, 72]. Even if there are still a few false positives
in the static analyzer, they can hardly affect the subsequent API matching and bug detection. On
the one hand, API functions that are mistakenly matched due to these false positives are easily
discarded by the API matcher due to argument mismatches. On the other hand, Citadel identifies
bugs when the target API exhibits the same buggy behavior that is consistent with the source API’s
bug report. Therefore, Citadel can always detect real anomalous behavior. However, the static
analyzer could still miss some analogous source code functions. Specifically, different developers
may use the same logic to construct functions to solve specific problems, resulting in different
implementations of two source code functions but similar functionality [84]. Currently, the static
analyzer cannot effectively identify such analogous functions. How to enhance the matching effect
of similar source code functions and APIs in Citadel will be a future direction. ❺ Integration with

Existing Tools: The detection effectiveness of Citadel is influenced by the diversity and quality of
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the collected bug cases. Therefore, as described in §4.1, we collect and validate bug cases in the
preparation stage to ensure the quality of the bug cases extracted from GitHub repositories. A
promising future direction is to integrate Citadel with other bug-finding tools (e.g., fuzzing) into a
unified testing pipeline. In such a pipeline, once an API bug is detected by an external tool, the
problematic API and its bug-triggering test case can be directly used as input to Citadel. Citadel
can then efficiently construct new test cases and detect bugs in analogous APIs. This workflow has
the potential to substantially reduce manual effort, enhance the efficiency of bug detection, and
assist developers in more effectively identifying the root causes of bugs.
DL Bug Finding. ❶ LLM Library Bug Finding: With the advent of Large Language Model (LLM)
technology, dependent libraries (e.g., APEX [20]) of LLMs exhibit various bugs, such as crashes
during model training [44, 57, 86], which impede the application and deployment of LLMs. However,
the substantial runtime overhead of LLMs renders traditional DL fuzz testing methods, which
generate millions of test cases, unsuitable for LLM library testing. Developing an efficient LLM
library testing method to uncover potential bugs will be a valuable future direction. ❷ Performance

Bug Detection: Current DL framework testing primarily addresses crashes and numerical incon-
sistencies, with little attention given to performance bugs that impact model training, economy,
and even the environment. Detecting performance bugs necessitates constructing a test oracle and
estimating the expected overhead. Our finding suggests that different settings of API arguments
may influence the actual overhead (e.g., ‘Bug Case 1’ of §5.2). Therefore, the runtime overhead of
one API function can be qualitatively or even quantitatively estimated based on the description
of these arguments, serving as a pseudo-test oracle. Formalizing expected performance changes
from API argument descriptions and constructing test oracles to detect performance bugs will be
an important future direction.

8 CONCLUSION
This paper presents Citadel, a bug-finding tool for DL frameworks that can find new bugs that are
similar to known bugs, regardless of bug types. For a problematic DL framework API function and
its associated bugs, it matches analogous API functions from the perspectives of context similarity
and signature similarity, and then synthesizes test cases for these analogous API functions. Then,
Citadel leverages the behavior of the confirmed bug on the problematic API as the test oracle to
evaluate the generated test cases and efficiently identify new API bugs on analogous API functions.
Our evaluation on two frameworks shows that Citadel can effectively and efficiently detect status,
value, and performance bugs.
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