
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2023

Seed selection for testing deep neural networks Seed selection for testing deep neural networks

Yuhan ZHI

Xiaofei XIE

Chao SHEN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Xiaoyu ZHANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
ZHI, Yuhan; XIE, Xiaofei; SHEN, Chao; SUN, Jun; ZHANG, Xiaoyu; and GUAN, Xiaohong. Seed selection for
testing deep neural networks. (2023). ACM Transactions on Software Engineering and Methodology. 1-33.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8120

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yuhan ZHI, Xiaofei XIE, Chao SHEN, Jun SUN, Xiaoyu ZHANG, and Xiaohong GUAN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8120

https://ink.library.smu.edu.sg/sis_research/8120

Seed Selection for Testing Deep Neural Networks

YUHAN ZHI, Xi’an Jiaotong University, China

XIAOFEI XIE, Singapore Management University, Singapore

CHAO SHEN∗, Xi’an Jiaotong University, China

JUN SUN, Singapore Management University, Singapore

XIAOYU ZHANG, Xi’an Jiaotong University, China

XIAOHONG GUAN, Xi’an Jiaotong University, China

Deep learning (DL) has been applied in many applications. Meanwhile, the quality of DL systems is becoming a big concern.

To evaluate the quality of DL systems, a number of DL testing techniques have been proposed. To generate test cases, a set

of initial seed inputs are required. Existing testing techniques usually construct seed corpus by randomly selecting inputs

from training or test dataset. Till now, there is no study on how initial seed inputs afect the performance of DL testing

and how to construct an optimal one. To ill this gap, we conduct the irst systematic study to evaluate the impact of seed

selection strategies on DL testing. Speciically, considering three popular goals of DL testing (i.e., coverage, failure detection

and robustness), we develop ive seed selection strategies including three based on single-objective optimization (SOO) and

two based on multi-objective optimization (MOO). We evaluate these strategies on 7 testing tools. Our results demonstrate

that the selection of initial seed inputs greatly afects the testing performance. SOO-based selection can construct the best

seed corpus that can boost DL testing with respect to the speciic testing goal. MOO-based selection strategies construct seed

corpus that achieve balanced improvement on multiple objectives.

CCS Concepts: · Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Deep learning testing, Seed selection, Coverage, Robustness

1 INTRODUCTION

Deep learning (DL) [42] has been successfully applied in various applications, such as image processing [13, 63],
natural language processing [14] and game playing [58, 71]. However, it has been demonstrated that Deep Neural
Networks (DNNs) are vulnerable to adversarial attacks that cause DNNs to make incorrect decisions given slightly
perturbed inputs [11, 29, 38, 51, 87]. It poses a threat to the quality of DL systems especially when they are applied
in safety-critical applications such as autonomous driving [18, 44], biometrics identiication [61, 67] and medical
diagnosis [23, 52]. Therefore, the quality of DL systems requires systematic evaluation before deployment.

∗Chao Shen is the corresponding author.

Authors’ addresses: Yuhan Zhi, zyh1123@stu.xjtu.edu.cn, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, China, 710049; Xiaofei

Xie, Singapore Management University, 81 Victoria Street, Singapore, 188065, xfxie@smu.edu.sg; Chao Shen, Xi’an Jiaotong University,

No.28, Xianning West Road, Xi’an, China, 710049, chaoshen@mail.xjtu.edu.cn; Jun Sun, Singapore Management University, 81 Victoria

Street, Singapore, 188065, junsun@smu.edu.sg; Xiaoyu Zhang, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, China, 710049,

zxy0927@stu.xjtu.edu.cn; Xiaohong Guan, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, China, 710049, xhguan@mail.xjtu.

edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/7-ART $15.00

https://doi.org/10.1145/3607190

ACM Trans. Softw. Eng. Methodol.

HTTPS://ORCID.ORG/0000-0003-4977-3656
HTTPS://ORCID.ORG/0000-0002-1288-6502
HTTPS://ORCID.ORG/0000-0002-6959-0569
HTTPS://ORCID.ORG/0000-0002-3545-1392
HTTPS://ORCID.ORG/0000-0001-7010-6749
HTTPS://ORCID.ORG/0000-0002-8826-0362
https://orcid.org/0000-0003-4977-3656
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0002-3545-1392
https://orcid.org/0000-0001-7010-6749
https://orcid.org/0000-0002-8826-0362
https://doi.org/10.1145/3607190
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607190&domain=pdf&date_stamp=2023-07-07

2 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

To evaluate the quality of the DL systems, a number of DL testing techniques [31, 49, 68, 74, 77] have been
proposed. Similar to traditional software testing, DL testing aims to generate diverse test cases such that diverse
failures (e.g., incorrect prediction) of the DL system can be found. To facilitate the generation of diverse test cases,
some novel coverage criteria (e.g., Neuron Coverage [62], Surprise Adequacy [40]) are proposed to guide the
testing of DL systems. Inspired by traditional software testing, researchers have developed new coverage-guided
testing techniques [31, 59, 62, 77, 88] that have been demonstrated to be efective in inding failures in DL systems.

The basic idea of coverage-guided testing (CGT) is: given a set of initial seed inputs, CGT iteratively generates
new test cases by randomly mutating some of the seed inputs that are sampled from the initial seed corpora (called
seed sampling). The coverage criteria are used to select and keep łinterestingž test cases that can increase coverage
(i.e., cover new behaviors of the DNN). CGT reduces to random testing if there is no such coverage feedback.
Since all test cases are generated from the initial seed inputs, the quality of the initial seeds greatly afects the
testing performance. However, most recent DL testing studies mainly focus on mutation strategies (e.g., adopting
advanced data transformation [77]), seed sampling (e.g., random and recency-based strategy [59, 88]) and coverage
criteria [40, 49, 74]. Most of the existing testing techniques randomly select seed inputs from the training/test
dataset [62, 77, 88]. For example, DeepXplore [62], DeepTest [77] and DeepHunter [88] randomly selected 2000,
100 and 1000 initial seed inputs for evaluation, respectively. There are some existing works proposing diferent
strategies to select initial seeds for testing [3, 20, 65, 95]. However, we still do not have a clear understanding of
the impact of these seed selection strategies on testing performance, and whether there is a general method of
selecting seeds for a certain testing goal on any testing tool.

In traditional software testing, there have been some studies that note and demonstrate that the quality of seed
inputs can greatly impact the performance of CGT such as fuzzing [35, 41, 60, 80], and there are some general
ways to select initial seed corpus. Speciically, a common approach in traditional software testing is the corpus
minimization technique [2, 35, 64, 91] which selects the smallest subset of seeds such that some redundant inputs
that are not worth exploring can be quickly discarded. The quality of seed inputs is also a problem worthy of
further discussion in DL testing. Considering the testing budget and time cost, it is impossible to select all possible
inputs such as training data, test data or real-world data. Therefore, initial seed selection is a necessary step
before DL testing. Informally, the research problem is that, given a large amount of data and the testing budget
(i.e., the number of seed inputs), how can we select a set of seed inputs that can boost the performance of the
testing techniques? However, due to the fundamental diference between traditional software and DNN, it is
still unknown whether the existing seed selection1 strategies (e.g., corpus minimization) are efective for DL
testing. Speciically, ❶ the testing goals are not exactly the same. In addition to the common goals, i.e., coverage
and the number of failures, DL testing also focuses on whether the generated test cases can be used to improve
robustness [40, 82]. ❷ In terms of failure detection, as it is diicult to measure the potential of a test case in
triggering bugs in traditional software, the corpus minimization usually works by inding the minimum set
of seeds that still maintains the code coverage. However, there are some metrics (e.g., uncertainty [21, 26, 72],
conidence score [53, 92, 94]) that could be used to measure the potential to generate adversarial examples, which
can be potentially adopted for seed selection in DL testing. ❸ Diferently from traditional software, a DL task can
often be accomplished with diferent models (e.g. diferent model architectures or the same architecture but with
diferent parameters). One may ask whether high-quality seed corpora selected from one DNN are still useful for
testing other DNNs.

To this end, we conduct the irst systematic study to understand the seed selection on DL testing. Speciically,
we focus on three common testing goals: coverage, failure detection and robustness enhancement. To facilitate
an in-depth investigation, we irst propose three seed selection strategies aimed at achieving optimal results

1Note that we distinguish seed selection (referring to construct the initial seed corpus) from seed sampling (referring to select a seed to

mutate during testing).

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 3

for diferent testing goals. To study whether we can select one optimal seed corpus that can work well on all
testing goals, we then propose two multi-objective optimization (MOO) based seed selection strategies. Based on
diferent seed selection strategies, we aim to answer the following research questions:

• RQ1: For a speciic goal (i.e., coverage, failure detection and robustness), is there a seed selection strategy
which can boost the testing performance?

• RQ2: How useful are the MOO-based seed selection strategies in boosting the testing performance?
• RQ3: Can the optimal seed corpus selected from one model be efectively transferred to other models?

By answering these questions, we can better understand the impact of seed selection strategies on DL testing
and how it difers from traditional software testing. We conduct more than 14,000 runs of testing. Note that our
analysis only considers testing generators that perturb input images at the pixel level. Our results reveal that the
SOO-based seed selection strategy designed for a speciic goal can signiicantly help boost the testing performance
on that corresponding goal (e.g., coverage or failure detection) compared to random selection. However, it does
not work well on other goals. On the other hand, we found that it is diicult to select seed inputs for improving
robustness with the existing metrics. The MOO-based seed selection strategies have positive efects on all goals.
The results demonstrate the importance and efectiveness of seed selection in boosting testing performance.

In summary, we make the following contributions2 in this work.

• We conduct the irst systematic study to understand the impact of seed selection for DL testing.
• For the three goals of DL testing, we propose three single-objective optimization-based seed selection strategies
to boost the testing performance.

• We propose two multi-objective optimization-based seed selection strategies to fulill all three goals.
• We perform extensive experiments to assess how the diferent seed selection strategies afect coverage, failure
detection and robustness of diferent models. Our results demonstrate that seed selection can signiicantly
afect the testing performance, and comparisons between testing tools should also take into account suitable
seed selection.

2 BACKGROUND

2.1 Coverage-guided Testing

Coverage-guided testing (CGT) is a very popular technique for inding bugs [4]. Fuzzing (e.g., AFL [91]) is a typical
CGT technique that has been successfully used to detect thousands of bugs in real-world software [12, 69, 76].
The fuzzing process begins by choosing a seed corpus that contains a set of initial seed inputs. Then at each
iteration, it selects one seed from the seed corpus and generates some mutants based on the selected seed. The
code coverage information (e.g., branch coverage) is gathered by executing the mutants. The mutants are added
into the seed queue if they increase the coverage (i.e., covering new software behaviors). CGT is also adapted
to test DNN with the speciic coverage criteria deined for DNNs [40, 49, 62]. Many CGT techniques have been
proposed for DL testing with diferent coverage feedback [31, 43, 59, 62, 77, 88].

The initial seed inputs play an important role for CGT. Traditional CGT usually uses the łsingletonž corpus (i.e.,
a single seed), the empty corpus or large corpora including a large number of inputs [35]. Existing works [35, 64]
have demonstrated that the corpus minimization technique can boost the performance of CGT more than the
above three strategies in most cases. Since singleton and empty corpus are usually not applicable for CGT in DL
systems, most DL testing works randomly select a number of inputs from the training or test dataset. However, it
is unknown whether and how the seed corpus afects the DL testing.

2Our code and data are available on the website [1].

ACM Trans. Softw. Eng. Methodol.

4 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

2.2 DL Testing Evaluation

There are three common testing goals for DL testing: the coverage achieved, the number of failures detected and
the robustness enhancement based on the generated test cases. In this paper, we mainly study the impact of seed
selection on these goals.
Coverage. Coverage is a popular metric used in DL testing. DL coverage metrics follow the design ideas of
traditional software testing metrics (i.e., branch coverage, line coverage and so on). The intuition is to measure
the diversity of test cases in terms of exploring behaviors of DL systems. Multiple neuron-based metrics for
neural networks have been proposed [40, 49, 62, 73].

For example, Neuron Coverage (NC) is built on a threshold for the output value of each neuron. Given an input,
if the output value exceeds the deined threshold, it is considered to be activated. Otherwise, it is not activated.
NC measures the ratio of activated neurons.

k-Multisection Neuron Coverage (KMNC) is a ine-grained coverage metric that partitions the range of values of
each neuron into k sections (the values are obtained during the training process) and measures the ratio of all
sections covered by the test cases.

Likelihood-based Surprise Coverage (LSC) measures the relative novelty (i.e., surprise) of a given new input with
respect to the inputs used for training. It is deined by using bucketing to discretize the space of Likelihood-based
Surprise Adequacy (LSA). LSA uses Kernel Density Estimation (KDE) to estimate the probability density of each
activation value in the activation traces and obtains the surprise of a new input with respect to the estimated
density, which will be detailed in 3.2.3. Given an upper bound � of LSA, and buckets � = {�1, �2, ..., ��} that
divide (0,�] into � LSA segments, LSC for a set of inputs � is deined as follows:

��� (�) =

�

�

{

�� | ∃� ∈ � : ��(�) ∈
(

� · �−1
�
,� · �

�

]}�

�

�
(1)

While we use the coverage to name LSC, we have to notice that LSC is diferent from the traditional structural
coverage, such as NC and KMNC. This is because there is no inite set of targets for LSC to cover and LSC does
not render itself to a combinatorial set cover problem.
Failure detection. A signiicant goal of DL testing is to identify incorrect predictions of DL systems (i.e., failures)
from a given set of seed inputs. In this paper, we use the number of failures found within the same iterations to
compare the performance of diferent seed selection strategies on failure detection.
Robustness. Recent work RobOT [82] argues that DL testing should be aware of robustness improvement, i.e.,
the generated test cases should be valuable in improving model robustness after retraining. Speciically, RobOT
proposes a metric, named First-Order Stationary Condition (FOSC), which measures the potential of improving
the robustness for a test case.

Intuitively, a test case that induces a higher loss is a stronger adversarial example and is more helpful for training
robust models. Another intuition is that the loss around a given seed input often irst increases and eventually
converges as we follow the direction of the gradient to modify the seed. Thus, a test case with better convergence
quality corresponds to a higher loss than its neighbors and is more useful for improving model robustness. FOSC
provides a measurement of the loss convergence quality of the generated test cases. Let �0 be a seed input, we
assume that a test case �� is generated in the neighborhood �-sphere around �0, i.e., � =

{

� | ∥� − �0∥� ≤ �
}

(��

is generated from �0). Formally, given a seed input �0, its neighborhood area � =

{

� | ∥� − �0∥� ≤ �
}

, a test case

�� , and a DL model � (� is the parameters of �), the FOSC value of �� is calculated as:

�
(

��
)

= �

▽� �
(

�, ��
)

1
−
〈

�� − �0, ▽� �
(

�, ��
)〉

(2)

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 5

The FOSC value represents the irst-order loss of a given test case. The loss of a test case converges and reaches
its highest value when its FOSC value is zero. Therefore, a lower FOSC value means better convergence quality
and a higher loss.

2.3 Seed Selection for DL Testing

Some recent works on search-based DL testing propose initial seed selection strategies from diferent testing
goals. DeepHyperion [95] selects seeds from the feature space that represent meaningful properties of the test
scenarios, i.e. discriminative and interpretable properties of the inputs, or behavioral properties manifested by
the DL system when exercised by the test inputs. DeepHyperion considers two domains: handwritten digits and
autonomous driving. For digit classiication, they convert seeds from MNIST to SVG and evaluate the itness
(i.e., the diference between the conidence level associated to the expected class and the maximum conidence
level associated to any other class) and feature (i.e., boldness, smoothness, discontinuity, and rotation) values of
the seeds. Then with the values, they ind the corresponding cells of the feature map. Starting from a randomly
selected seed, DeepHyperion greedily selects the most diverse seed sets by computing the pairwise Manhattan
distance. DeepMetis [65] constructs the initial population by computing Euclidean distances between bitmaps
on MNIST and greedily constructing the set of most diverse seeds, starting from a randomly selected irst seed.
FITEST [3] aims to select an initial population that includes a diverse and randomly selected set of test input
vectors. They use an adaptive random search algorithm that attempts to maximize the Euclidean distance between
the input vectors. SEDE [20] measures how much an individual contributes to the diversity of the population by
measuring its distance from the closest individual in the population to compute the itness value, and then selects
the individuals with the best itness. They measure the distance between two individuals based on individuals’
chromosome vectors which contain simulator parameter values.
In this paper, we add the seed selection strategies in DeepHyperion and DeepMetis as two baselines. Since

FITEST and SEDE both evaluate the diversity by comparing the distance between the input vectors, their
customized input vectors that are related to the self-driving domain or in-car sensing task are diicult to transfer
to our datasets. Considering the adaptive random search algorithm in FITEST is similar to the search algorithm in
DeepHyperion and DeepMetis, and the features in DeepHyperion have been validated as meaningful features by
experts on the MNIST dataset, we use DeepHyperion to maximize the distance of features between seed inputs
to select the most diverse seed set. For the selection strategy in DeepMetis, since it does not need the manual
deinition of features, we can extend it to other datasets, so we adopt this approach on four datasets.

3 METHODOLOGY

3.1 Problem Definition and Overview

3.1.1 Problem Definition. Intuitively, seed selection is to select an optimal seed corpus from a given large number
of inputs (e.g., training or test dataset) in order to achieve better testing performance. Formally, given a CGT tool
� , a DL model � , a large collection of inputs I, and a time budget � , the seed selection (�) is to select an optimal
subset C ⊆ I in terms of a testing goal � such that:

C = argmax
C⊆I

� (� (� , C, �)) (3)

where� (� , C, �) takes in the target model � , the initial seed inputs C and a time budget � , and outputs a set of new
test cases; � is a speciic testing goal calculated from the test output. For example, based on the generated test
cases, we can calculate the coverage achieved, the number of failures detected or the robustness improvement.

Seed selection is an NP-hard problem [64]. A common approach is to use an approximation algorithm that can
approximate an optimal seed corpus. More details can be found in Section 3.2.

ACM Trans. Softw. Eng. Methodol.

6 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

LeNet5

ResNet20

Customized
CNN-model

Errors

Coverage

DeepHunter
（2）

TensorFuzz
（2）

Random Test

LeNet4 MNIST

Fashion-
MNIST

CIFAR-10

SVHN

Single Objective
Optimization

Selection (SOOS)

Multi-Objective
Optimization

Selection (MOOS)
Robustness

DL models (f) CGT Tools (T) Seed Corpus (C) Dataset (I) Seed Selection (Φ) Testing Goals (G)

Seed Inputs

RQ3: Transferability of
Seed Inputs

RQ1: Impact of
SOOS

RQ2: Usefulness
of MOOS

LSCG

DLFuzz

Fig. 1. Overview of our work.

3.1.2 Overview. Figure 1 shows the overview of our study. In general, we aim to study the impact of diferent
seed selection strategies on testing performance. We select 4 widely used datasets (i.e., MNIST, Fashion-MNIST,
SVHN, and CIFAR-10) and 8 models (two model architectures for each dataset, i.e., LeNet-4, LeNet-5 for MNIST
and Fashion-MNIST, a CNN-model3, ResNet-20 for SVHN and CIFAR-10). We select 5 diferent testing techniques
including 3 state-of-the-art CGT techniques (i.e., DeepHunter, TensorFuzz, and DLFuzz), 1 proposed Likelihood-
based Surprise Coverage Generation Technique (LSCG), and 1 random testing technique. To select seed inputs
for the speciic goals (i.e., coverage, failure detection, and robustness improvement), we develop multiple seed
selection strategies including 3 single-objective optimization-based selection strategies and 2 multi-objective
optimization-based selection strategies. With the proposed testing goals and seed selection strategies, we conduct
systematic experiments to answer the three research questions introduced in Section 1.

3.2 Seed Selection

In this section, we design diferent seed selection strategies for DL testing based on the three testing goals.

3.2.1 Metrics used for testing goals. For diferent testing goals, we select diferent metrics as the guidance of
seed selection:

• Coverage: Coverage is a widely-used goal to evaluate the efectiveness of testing. Intuitively, the higher the
coverage, the more diverse behaviors might be explored, therefore more diferent failures of the model are more
likely to be found. Based on diferent coverage goals, we can use the corresponding coverage metric to guide
the seed selection. In this paper, we mainly focus on two coverage metrics which are chosen respectively from
two typical works proposing coverage criteria: DeepXplore’s Neuron Coverage (NC) [62] and DeepGauge’s k-
Multisection Neuron Coverage (KMNC) [49]. Similarly, our method can be easily generalized to other structural
coverage criteria.

• Failure Detection: In order to discover failures in the model, we hope to generate more test cases that are
mispredicted by the model. We speculate that the number of failures is related to the uncertainty of the seeds.
So we select two metrics that indicate the degree of uncertainty, i.e., Prediction Conidence Score (PCS) [94]
and Likelihood-based Surprise Adequacy (LSA) [40] to guide the seed selection. More details will be introduced
in Section 3.2.3.

3We use the CNN model released on https://github.com/tohinz/SVHN-Classiier for SVHN which achieves high accuracy on SVHN, and we

use the same model architecture to train a model for CIFAR-10

ACM Trans. Softw. Eng. Methodol.

https://github.com/tohinz/SVHN-Classifier

Seed Selection for Testing Deep Neural Networks • 7

• Robustness: Diferently from traditional testing, failures generated in DL testing are usually used to improve
the model robustness. To guide the seed selection for robustness improvement, we adopt the gradient-based
metric [82] that is used to generate and select test cases for robustness improvement.

3.2.2 Coverage-guided seed selection. Inspired by the corpus minimization technique that is adopted by traditional
CGT to select a minimal set of initial seeds [35, 64, 91], we design a coverage-guided optimization strategy to
construct initial seeds for DL testing. The basic idea is to select a minimum set of seeds C from a given large
dataset I such that C can maintain the same coverage with I.

Formally, for a DNN � , we deine its coverage targets as �� = {�1, �2, ..., ��} (similar to the branches or statements
in code) that depend on the coverage criteria. For example, for Neuron Coverage, �� indicates whether the neuron
� is activated and� is the total number of neurons. For k-Multisection Neuron Coverage, �� indicates a section in
a neuron and� is the number of total sections of all neurons (i.e., � ∗� where � is the number of neurons). Given
an input � , we use ��� (�� , �) to represent whether �� is covered by � , 1 means covered and 0 means not covered.

Given a large set of initial seeds I = {�1, �2, ..., ��}, we select the seed corpus C as:

C = argmin
C⊆I

︁

�∈C

��

� .� . ∀�� ∈ ��, ∃� � ∈ C.��� (�� , � �) = 1

(4)

where �� = {� |� ∈ ��
∧

∃� ∈ I � .� . ��� (�, �) = 1} represents all targets that can be covered by I and

�� =

{

1, ������ �

0, ��� ������ �

We use a greedy strategy to solve the above optimization problem as shown in Algo. 1. We introduce an
optional parameter � that controls the number of seeds to be selected in order to avoid selecting too many seeds.
The default value � can be the size of I. Speciically, at each iteration, we select a seed that can cover the most
uncovered targets (Line 3). Note that there could be multiple seeds that can cover the same number of targets
and we randomly select one of them. The algorithm terminates if the number of seeds exceeds the threshold or
all targets are covered. If the expected seed number is not reached when all targets are covered, we can run the
algorithm again in the remaining seed pool until the expected number is reached.

One thing that needs to be noticed is that the strategy is not suitable for optimizing SC, because a single input
yields only a single SA value that does not belong to multiple SA buckets. From a diversity perspective, we can
not decide which seed (i.e., which SA value) is better using SC. Hence, we evaluate the value of the seed based on
selecting diferent SA buckets, i.e., higher/lower/uniform SA values (see Section 3.2.3).

3.2.3 Uncertainty-guided seed selection. For the goal with respect to discovering failures, we select two metrics
to measure the potential of generating erroneous test cases, including Prediction Conidence Score (PCS) [94]
and LSA [40].
PCS measures the probability diference between the two highest softmax outputs. Given a DNN � and an

input � , the PCS of the input � on � is calculated as follow:

��� (�, �) =���
�∈���

� [�] − ���
�∈���\{�∗ }

� [�] (5)

where��� is the set of classes, �∗ = �������∈���� [�] and � = � (�) is the output probability vector of the input �
over all classes.

PCS provides a quantitative metric to estimate the uncertainty of the model on the input. Intuitively, the smaller
the PCS, the closer input is to the decision boundary (between the two classes with the highest probability).
Therefore the input with the smaller PCS has greater uncertainty and is more likely to help failure detection.

ACM Trans. Softw. Eng. Methodol.

8 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

Algorithm 1: Coverage-guided seed selection

Input: � : the DNN, I: the large seed pool, � ≤ |I|: the number of seeds to be selected
Output: C: the selected seed corpus

1 C = ∅;

2 while |C| < �
∧

�� ≠ ∅ do

3 � = argmax�∈I |{� ∈ �� |��� (�, �) = 1}|;

4 C = C
⋃

{�};

5 I = I\{�};

6 �� = ��\{� ∈ �� |��� (�, �) = 1};

7 end

8 return C;

LSA measures the relative novelty (i.e., surprise) of a given input with respect to the training inputs. ���
(X) is

a set of activation traces observed over certain neurons for a set of inputs � : ���
(�) = {�� (�) |� ∈ � }. Given a

training set T, LSA uses Kernel Density Estimation (KDE) to estimate the probability density of each activation
value in ���

(T). With a bandwidth matrix � and Gaussian kernel function � , the activation trace of the new

input � , and �� ∈ T, KDE produces density function �̂ as follows:

�̂ (�) =
1

�

����
(T)

�

�

︁

�� ∈T

��

(

���
(�) − ���

(��)
)

(6)

LSA is deined to be the negative of the log of density, making it negatively correlated with the probability
density:

���(�) = −���(ˆ� (�)) (7)

The study in [40] has demonstrated that inputs with higher LSA are harder to correctly classify, so we wonder
whether seeds with higher LSA will also induce more failures to be generated.

Diferently from the coverage-guided selection where the coverage target (see �� in Section 3.2.2) is deined as
discrete variables (e.g., a neuron/section is covered or not), PCS and LSA are continuous variables. Hence, we
cannot adopt the same strategy with the coverage-guided selection. Instead, we sort the value of these metrics
and select the seeds based on their values. In order to verify whether PCS and LSA are related to failure detection
and whether seeds with lower PCS and higher LSA are really helpful for failure detection, we set up three ways
of selecting seeds, each set of seeds has a diferent range of PCS/LSA values. We sort the METRIC (i.e., PCS and
LSA) value of all seeds I and use the following strategies in our study:

• Low-Value of METRIC: We select the top � seeds with the lowest METRIC value.
• High-Value of METRIC: We select the top � seeds with the highest METRIC value.
• K-Division-Value (KDV) of METRIC: Inspired by Surprise Coverage (SC) which uses bucketing to discretise the
space of surprise, we propose K-Division-Value (KDV) algorithm to investigate whether the degree of diversity
is important in this strategy. We divide the continuous METRIC into equal intervals and sample the seeds
uniformly that can cover diferent intervals, which has been detailed in Algo. 2. We irst divide the range of
METRIC (the smallest METRIC and the largest METRIC among I) into k intervals (Line 2). Then we iteratively
select one seed from each interval until � seeds are selected (Line 5-6). ����_�������� deines the next interval.
If it is the last interval (i.e., ��), then the irst interval (�1) is returned. Note that the seed sets in some intervals
(i,e., ���_����� at Line 5) may be empty.

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 9

Algorithm 2: K-Division-Value (KDV) algorithm

Input: � : the DNN, � : number of intervals, I: the large seed pool, � ≤ |I|: the number of seeds to be
selected

Output: C: the selected seed corpus
1 C = ∅;

2 Divide METRIC range [����∈I������ (�, �),����∈I������ (�, �)] into k equal intervals [�1, �2, ..., ��];

3 ���_��� = �1;

4 while |C| < � do

5 ���_����� = {� |� ∈ I
∧

������ (�, �) ∈ ���_���};

6 � = ����_��������� (���_�����);

7 C = C
⋃

{�};

8 I = I\{�};

9 ���_��� = ����_�������� (���_���);

10 end

11 return C;

3.2.4 Gradient-guided seed selection. As a data-driven model, the failures discovered are usually used to mitigate
the failures via retraining (e.g., adversarial retraining). Hence, another goal is to select seeds that can generate
failures for better robustness enhancement. Inspired by the robustness-oriented testing [82], the loss can be
used to guide the test case selection for improving the robustness. Intuitively, the test cases with higher loss are
selected because they could lead to stronger adversarial examples that are more helpful in training robust models.
For the robustness measurement, we have two steps for the selection: 1) the seed selection that selects seeds

for the testing and 2) the failure selection that selects failures (from the discovered failures) for the retraining.
Following the work [82], for the irst step, we use the gradient of loss to select the seeds. For the second step, we
adopt the FOSC (refer to Section 2.2 for more details) to select valuable failures for the retraining.

Formally, for each input � ∈ I and the DL model � , we calculate the entropy loss of � on � as:

� (�) = ������������ (� (�) , �) (8)

where � is the ground-truth label of � . Then the gradient can be calculated as:

�������� = ▽� (�) =
��

��
(9)

Like the selection strategy in [82], we use the seeds with a high gradient of loss, which makes it easier to
generate test cases. We sort the seeds I based on the gradient and select the top � seeds with the highest gradient.

3.2.5 MOO-based seed selection. In the previous sections, we mainly introduce the seed selection based on a
single objective metric (i.e., coverage, uncertainty, and gradient). However, our evaluation results show that the
seeds selected based on one metric do not work well on other metrics. Considering that we expect to achieve
optimized results on multiple goals, we design two multi-objective optimization (MOO) based seed selection
strategies.
The non-dominated sorting is usually adopted [46] in MOO because there does not exist a solution that

minimizes all objective functions simultaneously. A sample �1 is said to dominate another one �2 if there is at
least one objective of �1 better than that objective of �2 and there is no objective of �1 worse than that objective of
�2 [8]. �1 and �2 are considered equally good if they are not dominated by each other.

ACM Trans. Softw. Eng. Methodol.

10 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

To use a non-dominated sorting, we need to deine the dominance relation with respect to each metric (i.e.,
coverage, uncertainty, gradient) between any two seeds �0 and �1. For uncertainty, we choose PCS as the ranking
metric in MOO-based seed selection, since it inds more failures than LSA. For PCS and gradient, we can directly
compare their values. For example, �0 dominates �1 in terms of PCS if ��� (�0, �) < ��� (�1, �). However, it is
diicult to deine the dominance for coverage (i.e., which seed gets better coverage) because diferent seeds often
cover diferent targets. To this end, we propose two diferent strategies for MOO-based selection.

New Coverage Increase (NCI). Given a DNN � and a set of seeds � that have been selected, then we deine the
new coverage increase from a seed � as:

��� = {� |� ∈ �� ∧ ��� (�, �) = 1}

��� = {� |� ∈ �� ∧ ∃�′ ∈ � �.� . ��� (�, �′) = 1}

��� (� , �, �) = ���\���

(10)

Intuitively, NCI measures the new targets that can be covered by � over the existing targets covered by � .
Note that � is empty at the beginning. Given two seeds �0 and �1, we say �0 dominates �1 in terms of coverage if
��� (� , �, �0) > ��� (� , �, �1).
After the dominance relations of the three metrics are deined, we adopt the fast non-dominated sorting

algorithm [15] to solve this optimization problem, i.e., select the best � seeds. Note that, if the number of the best
non-dominated set exceeds the total number we need to select, we then randomly select a certain number of
seeds from the set. We denote this strategy as������ .

Coverage First (CF). A drawback of NCI strategy is that it depends on the seeds � that have been selected. The
coverage dominance relation between two seeds may change when diferent seeds (�) are selected. Hence, we
provide another heuristics strategy that irst performs an SOO-based selection on coverage and then performs
a MOO-based selection on PCS and gradient. Speciically, to select � seeds, we irst adopt Algo. 1 to select�
(� < �) seeds that have better coverage. Then MOO (on PCS and gradient) is used to select the remaining � −�
seeds. We denote this strategy as����� .

4 EVALUATION

4.1 Experiment Setings

4.1.1 Test Case Generation. We choose 7 testing tools to evaluate the impact of initial seed selection on test case
generation. Speciically, we select 2 kinds of general CGT techniques, i.e., DeepHunter [88] and TensorFuzz [59].
We choose DeepHunter because it is a relatively comprehensive, systematic and efective testing technique
among other techniques. Compared with DeepHunter, TensorFuzz has diferent mutation constraints and seed
prioritization strategies (i.e., how to select a seed to mutate during testing), which makes generation tools more
diverse. Speciically, DeepHunter adopts the probabilistic seed prioritization strategy, TensorFuzz randomly
selects a seed from the reservoir which contains one seed randomly selected from the whole queue and other ive
seeds picked from the rear of the queue. For DeepHunter and TensorFuzz, we select two widely used metrics, i.e.,
NC and KMNC, as the coverage feedback, respectively.
Considering both NC and KMNC are based on neuron-based coverage, we also select the metric Likelihood-

based Surprise Coverage (LSC) [40] as the coverage feedback. Since there is no existing tool that integrates
LSC, we implemented an LSC-guided generation tool, named Likelihood-based Surprise Coverage Generation
Technique (LSCG). We calculate the LSA between each generated test case and the training set to obtain the LSC
of the test case. If the new test case increases the overall LSC, it will be retained in the queue. Note that LSC
calculation is quite slow, and we only measure the LSC results on the LSCG instead of all generators.

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 11

DLFuzz [31] is a representative of search-based fuzzing testing techniques, it mutates the input to maximize
the neuron coverage and the prediction diference between the original input and the mutated input. We adopt
DLFuzz as a test generator, and the mutation process is completed by solving a joint optimization problem of both
maximizing NC and the possibility of causing incorrect prediction, which is diferent from the random-based
mutations adopted by DeepHunter and TensorFuzz.

In addition, we also select random testing as a testing tool, it iteratively generates new test cases by randomly
selecting which seed in the queue to be mutated and randomly selecting which mutated seeds to retain in the
queue without coverage guidance.
Finally, we conigure 7 testing tools, i.e., DeepHunter with NC and KMNC, TensorFuzz with NC and KMNC,

LSCG, DLFuzz, and random testing.

4.1.2 Research uestions. For RQ1 and RQ2, with the diferent numbers of seed inputs, we investigate whether
and how the SOO-based and MOO-based seed selection strategies boost the testing performance. For RQ3, since
we can design diferent models for a task, we study whether the initial seeds selected from one model can still be
useful for testing another model in the same task. The detailed settings of each research question are described
later.

4.1.3 Configuration. In order to ensure the fairness of the comparison, given the seed inputs, we run each testing
tool with the same number of iterations (i.e., 5,000) and use the same metamorphic mutation strategies (i.e.,
� = 0.02, � = 0.2 for DeepHunter [88], TensorFuzz [59] and LSCG, � and � limit the number of changed pixels
and the value that a pixel can change respectively). To mitigate the randomness during the testing, we run each
coniguration 5 times and average the results (for Random selection, we randomly select 5 diferent seed sets,
run each set one time and average the results). For DLFuzz, we use the coniguration reported by the author to
achieve optimal performance. All the experiments were conducted on a server with the Ubuntu 20.04.1 system
with 64-core 2.90GHz Xeon CPU and 125GiB of RAM.

We conduct extensive experiments (more than 14,000 runs of testing) to evaluate the impact of seed selection.
Due to the space limit, we only show partial results. More detailed results that show a similar trend can be found
on our website [1].

4.2 RQ1: Results of SOO-based Selection

Setup. We evaluate the efect of the 3 SOO-based selection strategies on the DL testing performance with regard
to diferent testing goals. For each strategy, we respectively select 2%, 3%, and 5% of the original seed set size as the
expected number. For the robustness improvement, most of the existing work on evaluating robustness relects
robustness by constructing a test set and calculating the accuracy of the retrained model on the test set. Some
works construct the test set by combining the mutants generated by mutation operators [27, 28, 34, 40, 45, 70],
and some test sets are composed of adversarial examples generated by adversarial attacks [22, 40, 82, 90]. We
also use these two methods to construct the test sets to evaluate model robustness. The irst test set consists of
test failures that are generated by the mutation operators. It represents a test set with the same distribution as
the retraining data and we name it ������ . The second one is an adversarial example dataset with a diferent
distribution from the retraining data and we name it ������� . Evaluating the accuracy of the retrained model on
these two datasets can give us a more comprehensive understanding of the improvement in model robustness.
������ consists of test failures that are not selected as the retraining data. We randomly select �/(� ∗�) failures
from each coniguration of each testing tool (� is the total number of failures to be selected, � is the number of
testing tools, and� is the number of conigurations). ������� are the new failures generated by the existing
adversarial attacks, i.e., FGSM (Step size = 0.01 for MNIST and CIFAR-10, Step size = 0.05 for Fashion-MNIST and
SVHN) and PGD (Step size = 0.01 for MNIST and CIFAR-10, Step size = 0.05 for Fashion-MNIST and SVHN, Steps

ACM Trans. Softw. Eng. Methodol.

12 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

= 10). We apply FGSM and PGD to generate one adversarial example for each test data, respectively. We randomly
select half of the adversarial examples from each of the two adversarial example sets to build up ������� . As
for the retraining data, after testing under a speciic coniguration, we respectively add a certain number of
test failures (i.e., 1%, 2%, 4%, 6%, 8%, 10% of the original training dataset size4) to the training dataset to retrain
the model. We select the test failures by adopting the test case selection strategy proposed in [82] (i.e., form
retraining dataset by equally combining test cases with small and large FOSC values).
Table 1 shows detailed results related to the coverage (shown in Row NC and KMNC) and the number of

failures (shown in Row #Failure). The optimization results that are guided by NC and KMNC are shown in
Columns CGS-NC (CGS refers to Coverage-Guided Selection) and CGS-KMNC. Row #Seeds shows the number
of seeds selected by diferent strategies. For instance, we select 200, 300, and 500 seeds for the MNIST dataset.
Limited by the space, we only show the testing results with selecting 2% of the original seed set size and one
model (LeNet-5 for MNIST and Fashion-MNIST, CNN for SVHN and ResNet-20 for CIFAR-10) here, the rest of the
results that show a similar trend are put on our website [1]. The bold numbers show the best results obtained
under the same experimental settings across diferent selection strategies.

The results of two baselines, DeepMetis and Random selection, are put in Table 1. However, DeepHyperion is
a domain-speciic work, the features designed for MNIST can not be transferred to other datasets. In particular,
constructing the feature dimensions in a new domain (e.g., CIFAR) highly relies on the domain knowledge of
experts. Hence, we only compare our methods with DeepHyperion on MNIST. The results of DeepHyperion are
put in Table 7. Since DeepHyperion randomly selects the irst seed, causing that the optimized seed set is not the
same at each selection. Therefore, we select ive sets of seeds and use them as the initial seeds separately, namely
DHp1, DHp2, DHp3, DHp4, and DHp5 in Table 7.
Coverage.We optimize the seeds by using coverage information. We set the threshold of NC to 0.75 which is
generally adopted by some popular test generators such as DeepXplore and DeepHunter. For KMNC, we set
� to 5 to control the computation, i.e., to keep the number of neuron sections within an acceptable amount of
computation. We ind that a large proportion of coverage targets can be covered when we use KMNC as the
coverage metric, except on SVHN dataset. Further analysis of the results from the SVHN dataset showed that the
seeds in the SVHN test dataset mostly cover the same set of neuron sections. This is because KMNC delimits
the upper and lower bounds based on the neuron output of the training dataset, while the SVHN training set
has some inputs that cause the neurons to output extreme values (i.e., large upper bound or small lower bound),
resulting in a large neuron output range. After dividing the neuron output range into � sections (we set � = 1000
during test generation which follows the setting in DeepHunter), the range of each section is very large, thus the
neuron outputs of most seeds fall into the same range, which causes KMNC to be low for SVHN.
Considering the coverage results in Table 1, we can observe that the coverage-guided selection (or ���

strategies) can always select the seeds that achieve the best coverage results than others (i.e., the random selection
and uncertainty/gradient-guided selection). The seeds optimized using KMNC (Column CGS-KMNC) can achieve
the highest KMNC values than other seed sets in most cases, and so do CGS-NC (��� sometimes achieve
the highest NC values on DLFuzz, since they considered coverage during selection). For instance, compared to
the random seed selection, KMNC-guided selection can help DeepHunter increase the KMNC value by 9.8%,
14.3%, and 13.2% on MNIST, Fashion-MNIST, and CIFAR-10, respectively. Compared to DeepMetis, KMNC-guided
selection can help DeepHunter increase the KMNC value by 9.0%, 10.2%, and 11.5% on MNIST, Fashion-MNIST,
and CIFAR-10, respectively. Considering the randomness of test generation, we calculate the p-value and efect
size between CGS-NC/KMNC and random selection. In most cases, the p-value is less than 0.05, and the efect size
is large. We report the results in Table 3. The p-values less than 0.05 are bolded. We also calculate the p-value and
efect size between CGS-NC/KMNC and DeepMetis, the results are shown in Table 4. In most cases, the p-value

4We show the average results in Table 6 and detailed results are put on the website [1].

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 13

Table 1. Testing results of diferent seed selection strategies (DH refers to DeepHunter, TF refers to TensorFuzz, RT refers to

Random Test, M refers to MNIST, F refers to Fashion-MNIST, S refers to SVHN, C refers to CIFAR-10).

Settings Optimization Strategies

Data Metric Testing Tool CGS-NC CGS-KMNC PCS-low PCS-high PCS-KDV Grad-high ������ ����� DeepMetis Random

M

#Seeds 200 200 200 200 200 200 200 200 200 200

NC

DH-NC 70.9 68.5 68.6 62.4 67.6 68.1 68.8 69.7 70.5 68.8
TF-NC 69.6 68.1 67.1 60.5 66.9 66.6 67.6 68.5 69.2 67.2
DLFuzz 70.7 71.6 70.7 40.1 72.0 72.4 72.6 71.3 69.9 67.8
RT 68.1 64.7 63.0 48.5 63.3 64.3 64.5 65.8 64.5 59.5

KMNC
DH-KMNC 69.3 80.1 61.8 62.3 64.2 62.1 70.2 76.2 71.1 70.3
TF-KMNC 46.7 49.6 43.3 42.7 43.1 41.7 45.5 47.4 47.4 45.8

RT 55.4 60.8 50.7 49.2 51.7 49.4 54.7 58.1 56.5 55.5

#Failure

DH-NC 4,133.2 3,373.0 8,455.2 2,255.6 7,665.0 8,582.6 7,297.6 5,891.2 3,554.6 2,424.4
TF-NC 3,211.2 5,358.6 5,779.8 3,379.2 4,189.0 4,714.4 4,414.6 3,322.8 2,102.4 2,959.6

DH-KMNC 2,633.4 1,767.0 6,883.2 632.0 6,156.0 6,450.6 5,136.4 3,748.2 2,019.8 1,136.2
TF-KMNC 302.0 323.2 986.6 58.4 862.4 929.4 820.6 473.4 870.8 186.4
DLFuzz 309.0 204.3 967.0 1.0 847.0 915.3 741.7 502.3 98.6 97.0
RT 638.0 453.0 2,213.8 128.6 1,716.6 2,080.6 1,469.0 989.2 530.2 245.6

F

#Seeds 200 200 200 200 200 200 200 200 200 200

NC

DH-NC 62.6 62.8 60.9 60.9 62.0 62.3 62.4 62.4 62.7 62.1
TF-NC 62.4 62.8 60.9 59.7 61.6 61.9 62.0 62.4 62.4 61.9
DLFuzz 64.7 63.8 63.4 63.4 63.1 63.8 63.7 63.9 64.6 64.4
RT 62.6 62.0 58.1 57.8 61.1 60.5 60.8 62.0 61.4 61.6

KMNC
DH-KMNC 56.3 71.5 45.2 58.8 50.4 48.4 58.3 68.0 61.3 57.2
TF-KMNC 39.5 47.9 32.7 44.5 33.8 36.3 40.0 46.3 45.9 40.5

RT 48.1 59.3 37.9 50.5 40.5 41.2 50.5 55.3 51.6 47.7

#Failure

DH-NC 8,015.0 7,877.8 19,848.2 7,369.4 12,468.8 11,408.2 16,449.4 12,748.8 8,758.8 7,794.0
TF-NC 2,811.6 4,722.6 15,443.4 9,256.2 10,118.4 12,066.4 8,815.8 8,582.2 7,676.4 11,215.0

DH-KMNC 6,729.0 5,694.6 15,838.8 3,147.2 11,642.8 12,209.2 14,633.0 8,906.4 6,591.4 5,704.6
TF-KMNC 1,277.2 954.8 2,432.0 466.6 1,911.8 2,312.4 2,362.6 1,605.0 3,843.8 1,118.4
DLFuzz 884.7 797.7 982.3 707.7 955.0 987.7 957.7 882.3 877.4 841.7
RT 1,584.8 1,405.0 4,758.4 930.8 3,709.2 3,264.0 3,884.4 2,303.4 2,251.0 1,863.4

S

#Seeds 500 500 500 500 500 500 500 500 500 500

NC

DH-NC 64.7 60.4 56.1 57.0 56.3 55.4 55.5 62.2 57.4 58.5
TF-NC 63.8 56.4 53.8 54.3 53.9 52.8 52.1 61.6 53.8 54.7
DLFuzz 73.7 71.2 71.0 71.5 71.6 71.7 71.9 73.8 70.5 71.5
RT 57.6 47.0 44.4 46.1 46.8 44.5 44.2 56.6 45.5 46.9

KMNC
DH-KMNC 0.85 1.01 0.69 0.90 0.84 0.66 0.65 0.78 1.00 0.85
TF-KMNC 0.77 0.93 0.62 0.81 0.77 0.60 0.58 0.69 0.92 0.77

RT 0.69 0.83 0.54 0.73 0.67 0.52 0.51 0.62 0.82 0.69

#Failure

DH-NC 5,447.8 4,523.2 19,590.0 3,157.6 4,908.0 12,875.6 18,299.8 15,185.8 4,487.0 4,863.0
TF-NC 2,880.2 2,805.0 13,893.2 2,697.4 3,311.4 8,697.4 13,152.6 8,198.2 3,031.8 3,763.0

DH-KMNC 3,031.0 2,029.8 13,270.2 1,710.8 2,717.0 9,078.8 13,188.0 8,102.5 2,005.2 2,634.6
TF-KMNC 1,912.0 1,229.6 7,390.0 985.6 1,698.0 5,601.8 7,955.0 4,991.4 1,076.2 1,357.2
DLFuzz 2,282.0 1,971.3 2,490.0 2,056.0 2,283.7 2,477.0 2,489.0 2,430.0 2,000.0 2,258.7
RT 1,392.6 690.2 8,316.6 422.4 1,146.4 5,453.2 8,451.0 5,254.4 850.8 1,120.4

C

#Seeds 200 200 200 200 200 200 200 200 200 200

NC

DH-NC 28.3 25.0 19.1 21.0 22.5 18.8 22.3 24.5 17.4 20.8
TF-NC 29.4 25.4 21.3 21.5 22.3 18.1 22.5 24.5 18.5 19.1
DLFuzz 70.7 71.2 70.3 69.8 70.1 69.5 70.6 70.7 70.2 69.8
RT 18.5 15.9 13.8 12.5 14.1 12.6 15.4 14.7 12.3 13.8

KMNC
DH-KMNC 77.7 85.5 68.9 74.3 69.5 68.2 80.4 82.5 74.0 72.3
TF-KMNC 55.9 61.8 49.9 54.8 52.1 50.2 54.9 58.3 54.5 52.1

RT 68.4 73.3 60.0 63.1 59.6 58.8 67.0 69.6 64.4 61.7

#Failure

DH-NC 10,450.0 9,361.4 20,386.8 7,635.4 15,993.4 10,216.0 14,350.6 13,008.6 9,493.4 9,325.0
TF-NC 15,968.8 11,903.2 17,710.4 21,734.6 17,356.2 14,815.4 14,012.4 3,272.8 9,187.4 14,777.0

DH-KMNC 6,622.4 5,572.6 18,510.8 3,037.8 13,608.0 5,810.6 9,321.2 7,799.2 6,128.0 6,401.4
TF-KMNC 2,953.6 2,785.8 5,632.2 1,303.4 5,120.6 2,088.6 4,056.8 3,695.0 2,656.6 2,457.2
DLFuzz 919.7 889.7 929.3 898.7 930.3 940.0 951.0 901.0 876.0 909.0
RT 3,772.6 2,720.0 9,610.0 1,284.6 7,182.2 3,120.2 5,221.8 4,365.4 5,916.0 3,459.6

ACM Trans. Softw. Eng. Methodol.

14 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

is less than 0.05, and the efect size is large, except for some results of TensorFuzz. This is because the variance
of results on TensorFuzz is very large, resulting in poor p-value results. To display the efect of our strategy
more intuitively, we plot the coverage-increasing trends on four datasets under the criteria KMNC and NC in
Figure 2, and the trends of Random Selection are drawn as a reference. The solid line represents testing with
the seeds optimized by coverage. The dashed legend with the suix ’-r’ means testing with randomly selected
seeds. Obviously, testing with seeds selected by coverage-guided optimization strategy always achieves better
coverage than random selection throughout the 5,000 iterations. To make the results more clear, we also give the
AUC of coverage trends in Figure 2, the results are shown in Table 2. We conduct a statistical analysis of the
results, the AUC values that are signiicantly better than the compared ones are underlined. We can ind that the
AUC values of our strategies are always higher and signiicantly better than the AUC values of random selection.
In Figure 2, we do not plot the coverage trend of DLFuzz, because DLFuzz cannot set the number of iterations.
Diferent initial seeds will lead to diferent iterations, and comparing the coverage trend under diferent iterations
is not reliable. So we only compare the inal coverage in Table 1. Due to the space limit, the comparisons between
coverage-guided strategy and DeepMetis (trends and AUC) are shown on the website[1], and the results show
that our strategies are still efective, especially on large datasets.

Table 2. AUC of coverage trends.

Dataset Metrics DeepHunter DeepHunter-r TensorFuzz TensorFuzz-r Random Random-r

MNIST
KMNC 0.8943 0.7894 0.5105 0.4663 0.6653 0.6144
NC 0.9919 0.9600 0.9705 0.9029 0.9582 0.8271

Fashion-MNIST
KMNC 0.9029 0.7182 0.8507 0.7077 0.7951 0.6584
NC 0.9985 0.9912 0.9969 0.9797 0.9989 0.9765

SVHN
KMNC 0.9388 0.7742 0.8507 0.7077 0.7951 0.6584
NC 0.9638 0.8403 0.9510 0.7817 0.8839 0.6986

CIFAR-10
KMNC 0.9416 0.7965 0.6499 0.5709 0.7960 0.6939
NC 0.9240 0.6820 0.8866 0.6261 0.6097 0.4519

Failures. For each dataset, we select three sets of initial seeds with low-value, high-value, and K-division-value
(KDV) of PCS, i.e., PCS-low, PCS-high, and PCS-KDV, respectively. Overall, we can observe that PCS-low discovers
more failures in most cases than others because it tends to select seeds that are closer to the decision boundary.
Conversely, PCS-high discovers fewer failures as it tends to select more robust seed inputs. For example, on SVHN,
DeepHunter with PCS-low seed set detects 19,590 failures under NC-guidance while PCS-high and PCS-KDV only
uncover 3,158 and 4,908 failures. In most cases, under the same coniguration, PCS-low can ind the maximum
number of failures compared with other seed sets (including baselines). For instance, on MNIST, Random Test
with PCS-low seed set detects 2,213 failures while DeepMetis and Random selection only uncover 530 and 245
failures. Table 3 shows the p-value and efect size between PCS-low/Grad-high and random selection. Table 4
shows the p-value and efect size between PCS-low/Grad-high and DeepMeits. In most cases, the p-value is less
than 0.05, and the efect size is large, especially for the results of PCS-low. This demonstrates the efectiveness of
our method.

Since the LSCG requires a lot of time (e.g., 12 hours on SVHN) to run the same iterations (i.e., 5000 iterations)
as other testing tools (e.g., more than three times the time required for DLFuzz, and more than 25 times the time
required for DeepHunter and TensorFuzz), we do not run other seed sets on the LCSG. We report the results of
LSA-based optimization strategies on the LCSG in Table 5. To provide more information about the efects of seeds
selected by LSA, we use LSA-low, LSA-high, and LSA-KDV as initial seeds for DeepHunter, TensorFuzz, and

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 15

Random Test (we do not show DLFuzz as it takes too long to run), and the results are shown in Table 5. We ind
that LSA-high inds more failures than LSA-low, LSA-KDV and Random selection on MNIST and Fashion-MNIST
in most cases. However, this trend seems to be not evident on SVHN and CIFAR-10. So actually LSA-high is not
very useful for failure detection when it expands to larger datasets. Figure 3 shows the trends in terms of failure
detected by DeepHunter on four datasets using diferent seed sets. The results show that, under the same number
of seed inputs and iterations, the PCS-low strategy can detect more failures than random selection and other
strategies. LSA does not have a good efect on failure detection.

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

60

70

80

Co
ve
ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

45

50

55

60

65

Co
ve
ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(a) MNIST (CGS-KMNC)

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

60

70

Co
ve
ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

45

50

55

60

65

70

Co
ve
ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(b) MNIST (CGS-NC)

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

60

70

Co
ve
ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

56

57

58

59

60

61

62

63

Co
ve
ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(c) Fashion-MNIST (CGS-KMNC)

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

Co
ve
ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

56

57

58

59

60

61

62

Co
ve
ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(d) Fashion-MNIST (CGS-NC)

0 1000 2000 3000 4000 5000
Iterations

0.6

0.7

0.8

0.9

1.0

Co
ve

ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

35

40

45

50

55

60

Co
ve

ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(e) SVHN (CGS-KMNC)

0 1000 2000 3000 4000 5000
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

Co
ve

ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

35

40

45

50

55

60

65

Co
ve

ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(f) SVHN (CGS-NC)

ACM Trans. Softw. Eng. Methodol.

16 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

60

70

80

Co
ve

ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Co
ve

ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(g) CIFAR-10 (CGS-KMNC)

0 1000 2000 3000 4000 5000
Iterations

10

20

30

40

50

60

70

80

Co
ve
ra
ge

(%
)

KMNC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

0 1000 2000 3000 4000 5000
Iterations

10

15

20

25

30

Co
ve
ra
ge

(%
)

NC

DeepHunter
DeepHunter-r
TensorFuzz
TensorFuzz-r
Random
Random-r

(h) CIFAR-10 (CGS-NC)

Fig. 2. Average coverage achieved on four datasets (using diferent coverage guidance).

0 1000 2000 3000 4000 5000
Iterations

0

1000

2000

3000

4000

5000

6000

7000

nu
m

be
r o

f f
ai

lu
re

s

KMNC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

0 1000 2000 3000 4000 5000
Iterations

0

2000

4000

6000

8000

nu
m

be
r o

f f
ai

lu
re

s

NC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

(a) MNIST

0 1000 2000 3000 4000 5000
Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000
nu

m
be

r o
f f

ai
lu

re
s

KMNC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

0 1000 2000 3000 4000 5000
Iterations

0

2500

5000

7500

10000

12500

15000

17500

20000

nu
m

be
r o

f f
ai

lu
re

s

NC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

(b) Fashion-MNIST

0 1000 2000 3000 4000 5000
Iterations

0

2000

4000

6000

8000

10000

12000

nu
m

be
r o

f f
ai

lu
re

s

KMNC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

0 1000 2000 3000 4000 5000
Iterations

0

2500

5000

7500

10000

12500

15000

17500

20000

nu
m

be
r o

f f
ai

lu
re

s

NC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

(c) SVHN

0 1000 2000 3000 4000 5000
Iterations

0

2500

5000

7500

10000

12500

15000

17500

nu
m

be
r o

f f
ai

lu
re

s

KMNC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

0 1000 2000 3000 4000 5000
Iterations

0

2500

5000

7500

10000

12500

15000

17500

20000

nu
m

be
r o

f f
ai

lu
re

s

NC
PCS-Low
PCS-High
PCS-KDV
LSA-KDV
LSA-High
LSA-Low
Random

(d) CIFAR-10

Fig. 3. Average number of failures detected by DeepHunter on four datasets.

Another interesting inding is that we expected LSA-KDV to perform well on coverage, but it did not show a
signiicant advantage in coverage compared to other methods. We consider that the selection process of LSA-KDV

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 17

Table 3. P-value and efect size when compared with Random Selection (DH refers to DeepHunter, TF refers to TensorFuzz,

RT refers to Random Test).

Optimization
Metric

Testing MNIST Fashion-MNIST SVHN CIFAR-10

Strategies Tool p-value efect size p-value efect size p-value efect size p-value efect size

CGS-NC NC

DH-NC <0.001 4.28 <0.03 1.66 <0.001 5.16 <0.001 8.53
TF-NC <0.001 3.53 <0.001 42.43 <0.001 12.38 <0.001 4.95
DLFuzz <0.05 1.36 0.30 0.70 <0.001 62.23 <0.001 19.88
RT <0.001 20.80 <0.001 6.88 <0.001 17.82 <0.001 4.47

CGS-KMNC KMNC
DH-KMNC <0.001 17.62 <0.001 15.44 <0.001 15.71 <0.001 15.89
TF-KMNC <0.001 2.61 <0.001 7.13 <0.001 15.69 <0.001 14.94

RT <0.001 3.20 <0.001 14.55 <0.001 13.73 <0.001 17.89

PCS-low #Failure

DH-NC <0.001 64.49 0.00 32.22 <0.001 62.32 <0.001 22.96
TF-NC <0.001 4.22 <0.03 1.82 <0.001 8.46 0.07 1.30

DH-KMNC <0.001 27.20 <0.001 14.88 <0.001 53.21 <0.001 27.24
TF-KMNC <0.001 6.08 <0.001 3.95 <0.001 12.53 <0.001 5.13
DLFuzz <0.001 6.53 0.08 1.23 0.45 0.49 0.88 0.09
RT <0.001 7.86 <0.001 7.51 <0.001 10.99 <0.001 6.48

Grad-high #Failure

DH-NC <0.001 92.21 <0.001 18.07 <0.001 54.14 <0.02 2.10
TF-NC <0.001 5.86 0.45 0.50 <0.001 5.58 0.20 0.88

DH-KMNC <0.001 22.57 <0.001 9.95 <0.001 47.36 0.20 -0.87
TF-KMNC <0.001 5.19 <0.01 2.27 <0.001 2.80 0.11 -1.13
DLFuzz <0.001 5.70 0.07 1.27 0.48 0.47 0.83 0.14
RT <0.001 9.89 <0.001 8.00 <0.001 7.34 <0.02 -1.95

MOO(CF)

NC

DH-NC <0.03 1.73 0.14 1.04 <0.001 3.32 <0.002 3.16
TF-NC <0.02 2.01 <0.001 23.57 <0.001 5.83 <0.002 2.91
DLFuzz <0.03 1.65 0.10 -1.18 <0.001 65.05 <0.001 18.77
RT 0.14 7.87 0.15 1.01 <0.001 20.35 0.23 0.82

KMNC
DH-KMNC <0.001 10.90 <0.001 11.91 <0.001 -5.15 <0.001 11.39
TF-KMNC <0.03 0.78 <0.001 4.63 <0.001 -8.36 <0.001 5.31

RT <0.02 1.04 <0.001 3.20 <0.001 -5.91 <0.002 2.95

#Failure

DH-NC <0.001 47.61 <0.001 17.91 <0.001 71.69 <0.001 6.50
TF-NC <0.01 2.16 0.88 -0.10 <0.001 3.23 0.23 0.83

DH-KMNC <0.001 14.98 <0.001 4.57 <0.001 31.02 <0.002 2.95
TF-KMNC <0.03 1.75 0.40 -0.56 <0.001 5.84 0.16 0.99
DLFuzz <0.002 2.82 0.58 0.36 0.58 0.36 0.97 -0.03
RT <0.001 6.64 <0.003 2.80 <0.001 11.54 0.48 -0.47

is a strategy to make the seed set more diverse, which will achieve a high LSC and may have some help in
achieving higher coverage. But this result does not cater to our conjecture, indicating that this strategy is not as
stable as coverage-guided seed selection. Using the KDV algorithm can only ensure that the seeds we choose are
relatively diverse, but it is diicult to determine whether they are globally optimal.
Robustness Enhancement. Table 6 shows the robustness evaluation of the newly trained models on failures
and adversarial examples. For uncertainty-guided selection, we choose seed sets selected by PCS for comparison
because they perform better than those selected by LSA on failure detection, the seed sets selected by LSA are
slow in generating failures. However, retraining requires a lot of failures. Considering the time cost, we only use
the seeds selected by PCS here. For baselines, we select Random Selection for comparison because DeepMetis is
also not good at generating failures. For each dataset, we retrain 6 models using diferent numbers of failures,
and we put the average accuracy here. More details can be found on the website [1]. We can observe that there
is no single best strategy that works well on all cases (even including the gradient-guided selection strategy),
which is unexpected although we have selected retraining data guided by the metrics [82] that are proposed for

ACM Trans. Softw. Eng. Methodol.

18 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

Table 4. P-value and efect size when compared with DeepMetis (DH refers to DeepHunter, TF refers to TensorFuzz, RT

refers to Random Test).

Optimization
Metric

Testing MNIST Fashion-MNIST SVHN CIFAR-10

Strategies Tool p-value efect size p-value efect size p-value efect size p-value efect size

CGS-NC NC

DH-NC <0.003 2.81 <0.05 -1.45 <0.001 7.03 <0.001 15.58
TF-NC 0.19 0.90 1.00 0.00 <0.001 13.55 <0.001 6.19
DLFuzz <0.01 1.88 <0.005 2.36 <0.001 90.51 <0.001 11.04
RT <0.001 6.66 <0.001 3.25 <0.001 12.12 <0.001 8.95

CGS-KMNC KMNC
DH-KMNC <0.001 18.57 <0.001 14.40 <0.01 2.04 <0.001 29.45
TF-KMNC 0.07 1.33 0.10 1.19 0.14 1.04 <0.001 3.95

RT <0.002 3.09 <0.001 6.77 0.12 1.09 <0.001 8.48

PCS-low #Failure

DH-NC <0.001 58.85 <0.001 41.58 <0.001 21.37 <0.001 65.61
TF-NC <0.001 3.87 <0.03 1.67 <0.03 1.71 <0.001 10.68

DH-KMNC <0.001 22.60 <0.001 17.53 <0.001 37.65 <0.001 8.49
TF-KMNC 0.11 1.14 <0.04 -1.57 <0.003 2.67 <0.001 11.96
DLFuzz <0.001 16.73 <0.001 24.41 <0.001 34.82 0.28 0.72
RT <0.001 6.37 <0.001 3.82 <0.001 4.65 <0.001 13.24

Grad-high #Failure

DH-NC <0.001 94.84 <0.001 41.37 <0.001 54.14 0.28 -0.73
TF-NC <0.001 4.99 0.47 0.48 <0.001 13.58 <0.05 1.48

DH-KMNC <0.001 18.50 <0.001 11.97 <0.001 47.36 0.20 -0.52
TF-KMNC 0.24 0.80 <0.03 -1.67 <0.001 26.80 0.46 -0.49
DLFuzz <0.001 10.94 <0.001 25.57 <0.001 33.90 0.34 0.64
RT <0.001 7.35 <0.001 4.06 <0.001 7.34 <0.02 -2.09

MOO(CF)

NC

DH-NC <0.001 -4.17 <0.001 -35.87 <0.001 4.35 <0.002 8.70
TF-NC 0.06 -1.41 1.00 0.00 <0.001 6.61 <0.002 4.65
DLFuzz <0.001 25.35 <0.001 -13.73 <0.001 93.30 <0.001 9.94
RT <0.04 1.56 0.09 1.22 <0.001 11.97 <0.003 2.74

KMNC
DH-KMNC <0.001 10.75 <0.001 9.66 <0.001 -35.31 <0.001 16.49
TF-KMNC 0.95 0.04 0.69 0.26 <0.001 -25.84 <0.02 1.96

RT 0.34 0.65 <0.05 1.50 <0.001 -19.13 <0.005 2.45

#Failure

DH-NC <0.001 39.64 <0.001 29.58 <0.001 79.21 <0.001 3.86
TF-NC <0.03 1.77 0.89 -0.09 <0.001 4.12 0.07 1.33

DH-KMNC <0.001 9.85 <0.001 4.87 <0.001 43.78 <0.001 3.75
TF-KMNC <0.002 -3.11 <0.005 -2.49 <0.001 5.93 0.25 0.79
DLFuzz <0.001 5.42 0.22 0.83 <0.001 30.58 0.855 0.12
RT <0.002 2.87 0.25 -0.79 <0.001 12.12 <0.03 -1.68

robustness improvement. It indicates that how to select the optimal initial seeds for robustness enhancement
remains to be further investigated. The accuracy on failures is higher than the accuracy on adversarial examples
because the new models are trained with some of the failures. Although the retraining data and the test data
do not coincide, they may have similar distributions. The average accuracy on four datasets shows that seed
inputs selected with coverage and MOO guidance can achieve relatively better results on failures (51.82%, 52.60%,
52.54% and 52.86%). PCS-low achieves the highest accuracy on adversarial examples.
Comparison with DeepMetis. In Table 1, we report the testing results of seed selection strategies in DeepMetis.
We ind that DeepMetis can achieve good coverage on small datasets (i.e., MNIST and Fashion-MNIST), which
is not diicult to understand, as the selection strategy of DeepMetis is to choose more diverse seeds. And we
can observe that it still does not have the higher coverage achieved by our method. However, when using this
selection strategy on larger datasets (i.e., SVHN and CIFAR-10), the efect is not good. This is to be expected, after
all, on complex images, simply calculating the distance between pixels can not relect the distance between the

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 19

Table 5. Testing results of LSA-based seed selection strategies (DH refers to DeepHunter, TF refers to TensorFuzz, RT refers

to Random Test).

Dataset Metric Testing Tool LSA-low LSA-high LSA-KDV Random Dataset Metric Testing Tool LSA-low LSA-high LSA-KDV Random

MNIST

#Seeds 200 200 200 200

Fashion
-MNIST

#Seeds 200 200 200 200

LSC (%) LSCG 96.9 95.8 99.2 98.3 LSC (%) LSCG 99 99.7 99.6 99.6

NC (%)

DH-NC 40.3 69.4 69.8 68.8

NC (%)

DH-NC 44.96 62.4 62.4 62.1
TF-NC 28.27 68.6 68.5 67.2 TF-NC 43.8 62.1 62.5 61.9
RT 30.61 64.2 61.5 59.5 RT 36.05 61.4 61.4 61.6

KMNC (%)

DH-KMNC 36.6 65.7 70.5 70.3

KMNC (%)

DH-KMNC 36.8 57.6 57.1 57.2
TF-KMNC 41.47 44.4 47.0 45.8 TF-KMNC 28.79 39.9 39.3 40.5

RT 27.52 53.3 53.2 55.5 RT 29.74 48.0 48.6 47.7

#Failure

LSCG 2870.1 5,906.2 2,036.3 3,856.4

#Failure

LSCG 6840.2 9,938.2 8,499.3 7,167.6
DH-NC 3020.2 6,466.0 2,234.7 2,424.4 DH-NC 10017.5 9,815.2 8,764.6 7,794.0
TF-NC 5271.2 3,128.9 1,346.0 2,959.6 TF-NC 19093.2 7,461.3 6,497.0 11,215.0

DH-KMNC 997.5 4,802.0 1,400.1 1,136.2 DH-KMNC 4660.4 7,198.1 6,817.7 5,704.6
TF-KMNC 164.1 565.7 208.7 186.4 TF-KMNC 682.9 1,302.3 1,247.3 1,118.4

RT 123.2 1,169.3 333.0 245.6 RT 886.1 2,323.7 2,241.3 1,863.4

Dataset Metric Testing Tool LSA-low LSA-high LSA-KDV Random Dataset Metric Testing Tool LSA-low LSA-high LSA-KDV Random

SVHN

#Seeds 500 500 500 500

CIFAR-10

#Seeds 200 200 200 200

LSC (%) LSCG 99.9 99.6 99.9 99.8 LSC (%) LSCG 7.09 7.1 6.2 5.9

NC (%)

DH-NC 56.37 51.0 54.9 58.5

NC (%)

DH-NC 17.92 23.6 19.9 20.8
TF-NC 54.61 46.6 52.5 54.7 TF-NC 19.6 22.1 20.3 19.1
RT 44.05 38.4 43.9 46.9 RT 12.31 15.0 14.0 13.8

KMNC (%)

DH-KMNC 0.65 1.0 1.0 0.8

KMNC (%)

DH-KMNC 62.56 77.6 78.0 72.3
TF-KMNC 0.59 0.9 0.9 0.8 TF-KMNC 49.92 54.5 54.9 52.1

RT 0.5 0.8 0.8 0.7 RT 58.6 67.7 66.1 61.7

#Failure

LSCG 4864.4 2,805.6 3,366.2 4,476.2

#Failure

LSCG 6819.9 5,799.1 7,461.2 6,064.8
DH-NC 5381.7 3,278.2 3,708.3 4,863.0 DH-NC 7904.2 9,322.9 8,160.5 9,325.0
TF-NC 5462.4 2,614.3 2,442.7 3,763.0 TF-NC 5445.5 10,540.0 12,905.0 14,777.0

DH-KMNC 3419 1,504.1 1,709.6 2,634.6 DH-KMNC 6659.1 4,948.5 6,646.3 6,401.4
TF-KMNC 3411.2 742.0 803.0 1,357.2 TF-KMNC 3332 3,355.3 1,893.0 2,457.2

RT 2120.7 684.3 590.3 1,120.4 RT 4541.3 9,322.0 3,269.7 3,459.6

Table 6. Robustness improvement (%) of models (retrained using test cases generated from diferent seed input sets) against

test failures (������) and adversarial examples (�������).

Dataset Test set Cov-NC Cov-KMNC PCS-low PCS-high PCS-KDV Grad-high ������ ����� Random

MNIST
������ 54.66 58.31 57.48 48.58 56.26 53.74 62.81 63.31 52.43
������� 18.69 19.47 23.57 21.40 21.91 19.66 19.80 20.47 21.74

Fashion-MNIST
������ 51.41 52.62 39.89 46.69 43.93 41.38 47.40 50.95 49.05
������� 12.12 11.31 12.01 11.57 11.15 11.70 11.86 12.44 10.93

SVHN
������ 50.25 48.86 41.37 50.54 51.16 43.46 44.96 44.38 48.68
������� 5.78 6.64 5.55 5.34 6.28 4.98 5.14 5.72 5.80

CIFAR-10
������ 50.96 50.60 47.64 52.45 48.22 51.61 54.99 52.82 48.71
������� 22.95 21.58 23.17 22.73 22.98 22.52 21.69 21.07 21.21

Average
������ 51.82 52.60 46.59 49.57 49.89 47.55 52.54 52.86 49.71
������� 14.88 14.75 16.08 15.26 15.58 14.71 14.62 14.93 14.92

two images on the model feature space. Compared to DeepMetis, our method performs well on larger datasets
and inds more failures than DeepMetis, demonstrating the eiciency of our strategies.
Comparison with DeepHyperion. In Table 7, we report the testing results of seed selection strategies in
DeepHyperion (DHp). Considering the randomness in selecting the irst seed of DHp, we select 5 sets of seeds.
We show the average results of 5 seed sets selected by DeepHyperion in Column ������ . To compare clearly, we

ACM Trans. Softw. Eng. Methodol.

20 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

also give the results of������ in Column������ and give the results of Random selection (another baseline)
in Column Random. For a comparison with other strategies, please refer to the results in Table 1.

We ind that our strategies can achieve better coverage and ind more failures than DHp andMOO also performs
better than ������ on each metric, which shows the eiciency of our strategies.

Table 7. Testing results of seed selection strategies in DeepHyperion (DHp refers to DeepHyperion, DH refers to DeepHunter,

TF refers to TensorFuzz, RT refers to Random Test)

Settings Optimization Strategies

Metric Testing Tool DHp1 DHp2 DHp3 DHp4 DHp5 ������ ������ Random

#Seeds 200 200 200 200 200 200 200 200

NC

DH-NC 68.3 69.1 68.9 69.8 67.2 68.7 68.8 68.8
TF-NC 66.8 68.1 67.5 68.8 66.0 67.4 67.6 67.2
DLFuzz 70.4 70.2 69.4 68.4 68.2 69.3 72.6 67.8
RT 62.4 63.0 62.5 62.3 61.4 62.3 64.5 59.5

KMNC
DH-KMNC 66.3 68.6 67.3 68.9 67.0 67.6 70.2 70.3
TF-KMNC 44.7 43.7 44.5 46.8 43.7 44.7 45.5 45.8

RT 53.3 53.7 53.5 54.6 52.3 53.5 54.7 55.5

#Failure

DH-NC 2,668.0 2,782.0 2,537.4 2,396.8 2,653.8 2,607.6 7,297.6 2,424.4
TF-NC 1,576.8 3,896.6 1,948.4 2,108.8 2,097.2 2,325.6 4,414.6 2,959.6

DH-KMNC 1,423.2 1,277.8 1,144.8 1,239.0 1,248.2 1,266.6 5,136.4 1,136.2
TF-KMNC 169.0 149.0 175.8 175.2 232.8 180.4 820.6 186.4
DLFuzz 106.7 88.2 95.4 83.9 66.6 88.2 741.7 97.0
RT 330.6 447.4 272.2 418.2 345.6 362.8 1,469.0 245.6

Comparison across diferent selection strategies. By comparing the results of diferent seed selection
strategies, we ind that both PCS-low and Grad-high have good efects on failure detection, although we expected
Grad-high to have a good efect on improving model robustness. We also observe that the selection strategy
proposed for a speciic testing goal cannot work well on another testing goal. For example, coverage-guided
selection can signiicantly improve coverage but cannot discover more failures than uncertainty-guided selection.
Even if both strategies are CGS, diferent coverage metrics may not necessarily achieve consistent results. For
example, the seeds optimized by CGS-NC do not perform as well as randomly selected seeds on KNMC in a
few cases. That is because NC is not as ine-grained as KMNC, the seeds which can achieve better NC are not
necessarily good on KMNC. Conversely, the seeds which are optimized by KMNC may not perform well on
NC. Since the threshold of NC is 0.75, the value range of some neuron sections may be less than 0.75. Seeds
with higher KMNC do not mean they would have higher NC. These results suggest that when choosing a seed
selection strategy, one should start with the desired testing objectives and choose the corresponding strategy,
the desired testing goal should be considered irst, and then the corresponding strategy could be selected. If one
wants to select a diverse seed set, then the CGS can be chosen. According to diferent needs, the coverage metric
in CGS can be replaced with any metric that can characterize diversity in a similar form. If one wants to generate
more failures in a short period of time, then the PCS-low should be used as a favorable seed selection strategy
before testing, which can help you save a lot of time. Furthermore, when comparing diferent testing tools, for
the sake of fairness, suitable seed selection should also be taken into account.

Answer to RQ1: With regards to a testing goal such as coverage and the number of failures, the corresponding

seed selection strategy can improve the testing performance and make DL testing more eicient. However, the

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 21

selection strategy proposed for a testing goal does not work well on another goal. For the robustness goal, none of

the selected metrics work well.

4.3 RQ2: Results of MOO-based Selection

Setup. In RQ1, we can ind that a single metric guided optimization strategy only performs better on the
speciic goal, and none of those strategies can make the testing performance better than random selection for
all goals. These results may indicate that we need a multi-objective optimization-based selection for achieving
better results on multiple goals. We evaluate the efect of the two MOO-based seed selection strategies. We also
select 2%, 3% and 5% of the original seed set size as the expected number. Because KMNC is more ine-grained
than NC, we use the information of KMNC as the basis for ranking the coverage (except svhn, which performs
poorly on KMNC). For����� ,� is determined by the optimization results in Algo. 1 (i.e., 154 for MNIST, 132
for Fashion-MNIST, 186 for SVHN and 135 for CIFAR-10).

Table 1 shows the testing performance with 200 input seeds that are selected by MOO-based selection strategies
(500 for SVHN). Other results can be found on our website [1]. Overall, we can observe that although the two
MOO-based selection strategies do not perform the best on every testing goal, they both achieve a good balance
across multiple goals. For the coverage results, we ind that the results of����� are very close to the results of
coverage-guided selection and they achieve the highest coverage in each strategy in some cases since the seed
inputs include the whole irst seed set selected by coverage guidance. The coverage achieved by������ is not
as good as ����� , but is better than PCS and gradient-guided selection in most cases. This is not surprising
since we have anticipated that ranking coverage is not an efective method to select high coverage seeds. For the
number of failures, the results are fewer than PCS-low because we selected fewer seeds from PCS-low. However,
����� is superior to random selection in coverage and failure in most cases. Table 3 shows the p-value and
efect size between����� and random selection.In most cases, the p-value is less than 0.05, and the efect size
is large. However, for KMNC of����� on SVHN, the efect size is a negative number. This is because KMNC
overall performs poorly on SVHN and we have analyzed the reasons in Section 4.2. Table 4 shows the p-value
and efect size between ����� and DeepMetis. We can ind that in most cases, MOO results are better than
DeepMetis results.
Table 6 shows the robustness results for MOO-based strategies (retrained using failures generated from 200

initial seed inputs). We can see that MOO-based selection strategies have better efects of improving model
robustness on the failures. On the other hand, the performance on adversarial examples are similar with other
SOO-based selection strategies.

Answer to RQ2: Overall, MOO-based seed selection strategies are useful in boosting testing performance, and

����� performs better than random selection on all goals. Compared with SOO-based selection strategies,

they perform a balance on multiple goals although they do not outperform the corresponding goal. Moreover,

MOO-based selection achieves promising results in robustness enhancement.

4.4 RQ3: Transferability of Seed Selection

Setup. In this section, we are concerned about whether the optimal seed corpus selected from one model can
be transferred to other models. Parameters (e.g., the weights and biases) and architecture (e.g., LeNet-5 and
ResNet-20) are two important factors that make up a model. To evaluate how much they afect the transferability
of seed corpus, we consider two diferent cases to study this problem: the model uses the same architecture but
with diferent parameters and the model uses diferent architectures. LeNet-4 and LeNet-5 are chosen as the two

ACM Trans. Softw. Eng. Methodol.

22 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

diferent model architectures for MNIST and Fashion-MNIST, Resnet-20 and CNN-model3 are chosen for SVHN
and CIFAR-10 (since we have trained on these models for our dataset in the previous RQs). Then we trained
another new model that has the same architecture (LeNet-5 for MNIST and Fashion-MNIST, CNN-model for
SVHN and Resnet-20 for CIFAR-10) but diferent parameters for each dataset. To obtain models with diferent
parameters, we use the original training dataset to retrain the model ten times to ine-tune the model to ensure
that the accuracy of the model does not change signiicantly. We use the seed corpus selected from the original
model to be the seed inputs of the new model for testing. We mainly consider the goals for the coverage and
failure detection since the robustness improvement has no obvious efect on the original model.
Table 8 and table 9 show the results of the transferability. We select the seed set with the best efect under

each metric for transfer. For CGS, we choose CGS-NC for SVHN and choose CGS-KMNC for other datasets. We
can observe that after transferring to new models, the testing results of seed sets selected by our methods are
still better than random selection in most cases. The coverage-guided strategy usually achieves higher coverage
compared to random selection. For the number of failures, PCS-low or Grad-high are still more efective than the
coverage-guided selection and random selection. Overall, the seed selection has some transferability between
diferent models in the same task.

Answer to RQ3: The seed selection strategy is still efective when we transfer to other model. The seed corpus

selected on a model works on other models on the same dataset.

5 DISCUSSION AND THREATS TO VALIDITY

5.1 Discussion

While DL testing is widely studied and many techniques [40, 59, 62, 77, 88] have been proposed, there is still a
lack of study on the impact of seed inputs. The indings in this paper can provide valuable information for the
following research:

• Seed inputs have a large impact. Our results show that we can select the optimal seed corpus that can largely
boost the testing performance for the speciic testing goals. In the future research, for a fair comparison of the
performance of diferent testing tools, the selection of seed inputs should be well considered according to the
testing goals.

• Time cost of seed selection. The time cost of our strategies is worth discussing. The time cost of each strategy
is shown in Table 10. We note that the time cost of random selection is lower than seed selection. However,
considering that seed selection can enable coverage and the number of failures to reach higher values earlier
in the subsequent test generation process, and achieve a higher upper limit of the inal value of metrics, the
time for seed selection is acceptable. For example, when we select 200 seeds, the KMNC of CGS-KMNC on
DH-KMNC takes 75s during the testing process to achieve 57.2% which is the highest KMNC achieved by the
Random seed set on Fashion-MNIST. Adding the time that seed selection takes (e.g., 400s), a total of 475s is
required, while the Random seed set requires 550s to achieve this coverage. And CGS-KMNC eventually reaches
a KMNC value of 71.5%, which is not achievable with randomly selected seeds. On CIFAR-10, the selection of
CGS-NC needs 400s, and the NC of CGS-NC on TF-NC requires 75s to reach 19.1% which is the highest NC of
the Random seed set. To reach the same coverage, the total time needed by CGS-NC is 475s while the Random
seed set needs 1400s. As for the number of failures, on MNIST, the Random seed set inds 97 failures in 2700s,
while PCS-low only needs 115s (95s for test generation and 20s for seed selection) to ind the same number of
failures. On SVHN, within 2000s (sum of the time for test generation and seed selection), Random set inds 750
failures while PCS-low inds 9900 failures. The randomly selected seed set is much slower than the optimized
seed set to achieve the same coverage or to ind the same number of failures. And randomly selected seeds can

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 23

Table 8. The transferability of optimized seed corpus (with diferent parameters).

Settings Optimization Strategies

Dataset Metric Testing Tool CGS PCS-low Grad-high ������ ����� Random

MNIST

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 69.0 69.8 69.8 69.6 69.8 67.2
TF-NC 67.4 67.4 67.8 67.4 68.8 65.4
DLFuzz 69.5 69.6 70.3 70.8 71.2 62.9
RT 60.5 59.9 60.5 62.4 61.6 57.3

KMNC (%)

DH-KMNC 80.6 64.6 65.0 71.7 78.3 71.8
TF-KMNC 52.0 42.7 43.4 48.2 50.5 48.4

RT 62.4 51.4 51.7 57.1 58.0 57.8

#Failure

DH-NC 2,874.8 5,791.8 6,101.6 4,388.8 5,206.6 4,433.6
TF-NC 1,734.0 3,653.8 3,403.2 3,097.8 3,145.2 2,897.0

DH-KMNC 1,425.4 4,234.6 4,505.4 2,675.8 3,827.4 2,763.8
TF-KMNC 198.6 545.2 652.8 247.0 427.4 325.6
DLFuzz 137.8 600.1 635.0 497.0 381.4 70.3
RT 349.8 1,192.6 1,382.2 673.8 1,202.2 670.8

Fashion-MNIST

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 65.2 65.0 65.9 65.1 65.3 65.1
TF-NC 64.2 64.0 65.0 64.1 64.8 64.4
DLFuzz 67.7 67.2 67.7 67.7 68.3 67.7
RT 63.7 62.6 63.1 63.1 64.5 64.2

KMNC (%)

DH-KMNC 69.6 46.1 49.1 56.2 65.6 55.5
TF-KMNC 46.7 33.8 33.5 39.3 43.2 38.3

RT 56.4 38.2 40.6 46.9 53.5 46.6

#Failure

DH-NC 7,331.2 14,371.0 12,649.0 12,721.0 10,198.2 8,166.4
TF-NC 7,155.8 20,712.8 12,715.6 12,318.6 11,537.8 8,474.0

DH-KMNC 4,893.0 13,756.2 13,563.0 13,387.4 8,821.0 6,771.2
TF-KMNC 920.4 2,340.6 2,539.0 1,870.2 1,862.2 1,201.2
DLFuzz 819.3 998.0 997.7 975.5 896.0 868.9
RT 1,230.8 4,103.8 3,951.4 3,822.8 2,923.2 2,511.0

SVHN

#Seeds 500 500 500 500 500 500

NC (%)

DH-NC 60.4 59.5 58.7 58.8 58.8 56.8
TF-NC 60.7 53.9 56.1 54.2 54.0 54.6
DLFuzz 73.8 72.0 72.1 71.9 73.4 73.4
RT 51.4 44.4 44.9 44.3 44.5 45.9

KMNC (%)

DH-KMNC 0.9 0.8 0.7 0.7 0.8 0.9
TF-KMNC 0.8 0.7 0.6 0.6 0.7 0.8

RT 0.7 0.6 0.6 0.6 0.6 0.7

#Failure

DH-NC 6,121.6 13,767.6 12,850.2 14,045.0 13,887.6 5,284.0
TF-NC 4,795.0 10,258.2 10,745.2 12,143.0 10,341.6 4,302.6

DH-KMNC 2,949.8 8,622.0 9,088.8 9,254.0 8,847.4 2,598.4
TF-KMNC 1,763.6 5,135.8 5,723.8 5,691.8 4,995.8 1,422.0
DLFuzz 2,297.2 2,490.3 2,479.8 2,488.1 2,426.0 3,607.4
RT 1,620.8 6,008.8 5,130.6 6,615.4 6,237.4 1,336.2

CIFAR-10

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 21.7 18.1 19.8 23.8 23.8 18.7
TF-NC 21.9 18.8 19.6 21.1 21.9 20.2
DLFuzz 70.5 69.0 68.5 69.7 69.7 69.2
RT 13.6 12.8 11.6 13.4 13.7 12.0

KMNC (%)

DH-KMNC 84.8 69.4 69.3 80.5 82.0 72.1
TF-KMNC 59.6 51.3 50.3 57.4 57.8 52.8

RT 72.1 59.8 58.3 68.2 69.6 61.6

#Failure

DH-NC 8,513.2 14,368.0 10,415.8 11,196.2 10,528.0 10,584.2
TF-NC 9,298.6 20,189.2 15,485.4 15,342.0 19,245.2 11,756.8

DH-KMNC 5,959.2 13,480.2 8,352.6 8,196.2 7,701.8 6,853.4
TF-KMNC 2,966.8 5,449.8 2,834.0 3,570.2 3,925.6 3,254.0
DLFuzz 899.1 970.7 973.6 971.5 938.2 951.0
RT 3,362.8 7,705.0 4,986.8 5,785.8 4,389.4 5,048.8

ACM Trans. Softw. Eng. Methodol.

24 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

Table 9. The transferability of optimized seed corpus (with diferent architectures).

Settings Optimization Strategies

Dataset Metric Testing Tool CGS PCS-low Grad-high ������ ����� Random

MNIST

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 59.4 62.0 60.1 60.1 60.1 60.6
TF-NC 59.6 61.2 59.6 60.1 60.1 60.4
DLFuzz 60.1 61.1 62.0 62.1 60.1 58.2
RT 58.6 57.7 58.4 59.0 59.6 59.3

KMNC (%)

DH-KMNC 74.1 66.1 66.3 69.5 72.9 67.4
TF-KMNC 50.7 45.6 45.8 49.7 50.5 47.8

RT 59.9 54.6 54.1 55.9 59.7 54.1

#Failure

DH-NC 3,456.6 8,403.6 8,364.2 7,151.2 5,701.8 2,616.2
TF-NC 3,957.6 8,322.4 10,405.2 6,012.2 5,696.0 4,511.6

DH-KMNC 2,041.0 6,364.8 6,412.6 5,319.0 4,020.0 1,251.6
TF-KMNC 287.0 1,134.0 1,006.2 824.4 503.0 226.0
DLFuzz 119.0 416.3 394.7 309.0 229.2 68.7
RT 669.8 1,912.0 1,918.2 1,363.0 1,122.8 314.4

Fashion-MNIST

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 46.2 42.5 44.3 48.8 47.7 45.5
TF-NC 44.8 41.0 43.8 46.8 45.8 44.8
DLFuzz 48.6 41.5 47.1 47.8 49.3 45.9
RT 41.4 36.2 41.3 41.7 43.3 40.6

KMNC (%)

DH-KMNC 66.4 48.2 55.1 57.1 64.1 59.1
TF-KMNC 44.0 35.5 39.5 40.3 44.4 43.1

RT 51.6 38.6 43.9 45.2 49.9 48.4

#Failure

DH-NC 6,535.8 11,088.8 10,135.4 9,940.4 8,473.2 7,199.6
TF-NC 5,846.0 7,555.8 7,833.6 6,971.6 6,530.0 5,896.2

DH-KMNC 3,631.0 8,552.2 7,783.2 7,123.2 5,484.6 4,514.4
TF-KMNC 437.2 1,229.8 1,399.8 1,073.4 788.2 632.2
DLFuzz 241.3 461.7 449.3 430.7 343.3 245.7
RT 953.8 2,793.6 2,575.4 1,790.6 1,820.2 1,138.4

SVHN

#Seeds 500 500 500 500 500 500

NC (%)

DH-NC 14.7 16.9 14.5 15.7 16.8 14.2
TF-NC 14.0 16.4 15.1 15.9 16.7 15.1
DLFuzz 72.5 72.6 72.2 72.4 72.5 72.2
RT 11.2 10.8 10.3 11.0 10.6 10.7

KMNC (%)

DH-KMNC 5.0 4.7 4.6 4.6 4.7 5.1
TF-KMNC 4.6 4.3 4.3 4.2 4.3 4.7

RT 4.5 4.3 4.2 4.2 4.3 4.5

#Failure

DH-NC 6,634.0 13,461.2 13,616.2 14,981.6 14,820.5 6,059.6
TF-NC 8,278.4 10,206.6 10,761.8 10,897.8 19,081.0 6,550.0

DH-KMNC 5,182.2 11,755.0 12,130.8 12,324.0 12,373.0 4,557.4
TF-KMNC 2,880.2 4,069.6 4,550.8 4,665.0 4,532.0 2,914.8
DLFuzz 1,972.3 2,368.8 2,377.5 2,400.3 2,272.0 2,368.0
RT 1,995.0 5,946.6 6,158.4 6,494.8 6,157.5 1,926.2

CIFAR-10

#Seeds 200 200 200 200 200 200

NC (%)

DH-NC 59.0 48.9 47.0 55.9 55.6 53.3
TF-NC 55.5 45.7 45.1 51.6 53.1 51.0
DLFuzz 57.9 53.1 51.4 55.4 56.5 54.1
RT 43.2 34.0 33.1 38.3 39.9 39.0

KMNC (%)

DH-KMNC 68.9 52.0 55.1 61.6 65.5 59.2
TF-KMNC 42.2 34.5 35.2 38.8 39.3 38.0

RT 55.3 42.1 44.8 46.9 51.4 49.0

#Failure

DH-NC 6,126.6 11,657.8 8,905.4 8,883.0 7,633.0 7,856.8
TF-NC 6,246.6 9,738.4 9,878.4 7,587.8 6,625.0 7,048.8

DH-KMNC 4,898.8 10,428.0 6,576.4 6,455.2 6,765.8 6,049.4
TF-KMNC 1,227.8 4,336.0 2,852.0 2,338.6 2,327.4 2,492.2
DLFuzz 964.2 983.5 984.3 977.0 966.9 977.3
RT 2,644.8 4,808.0 4,697.2 3,309.4 3,208.8 3,168.8

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 25

never achieve the highest coverage that can be achieved by optimized seeds, which can be found in Figure 2. In
the initial seed selection step, the seed selection strategies cost more than random selection, but using seed
selection strategies can save much more time and resources in the rest of the testing process.

Table 10. The time cost of each strategy.

Settings Optimization Strategies

Dataset Model CGS PCS LSA Gradient ������ ����� DeepHyperion Random

MNIST LeNet-5 100s 20s 20s 1s 5000s 120s 400s 1s
Fashion-MNIST LeNet-5 100s 20s 20s 1s 5000s 120s \ 1s

SVHN CNN 2700s 90s 90s 40s 140000s 2900s \ 4s
CIFAR-10 ResNet-20 400s 120s 120s 20s 20000s 550s \ 2s

• The scalability and generalisability of the results. The scalability of our method is acceptable, as it only afects the
seed selection phase before testing. However, for DL testing, scalability and time costs are largely determined by
the testing generators employed. The time cost of our seed selection strategies is almost directly proportional
to the input and model sizes, and the increase in time cost with increasing size is acceptable. Furthermore,
our approach is generalizable and not limited to speciic datasets or models. We demonstrate the eicacy
of our method on four commonly used datasets, as discussed in the paper, and our results exhibit good
generalizability across diferent datasets. Due to the signiicant amount of experimentation under various
settings and repetitions done in the literature, we did not conduct large-scale experiments, such as ImageNet.
In addition, testing tools are quite slow when it comes to testing these large models.

• Size of the seed inputs. We notice that existing DL testing works choose diferent numbers of seed inputs, so we
also study the impact of the number of seeds on the testing performance in terms of coverage and the number
of failures. Figure 4 shows the results on four datasets. The results show that the coverage is not impacted when
the number of seed inputs reaches a certain point, but the number of failures is impacted when the number of
seed inputs is changed. This is determined by the characteristics of DL-based software. However, the input
space of a DNN could be so large that we cannot test all the inputs given limited computation resource. So
seed selection is important and necessary when testing DNNs in reality. We observe that as shown in Table 1,
given a testing budget (e.g., selecting limited seed inputs or running testing within a time limit), a better seed
selection strategy (e.g., PCS-low) can boost the performance of testing, e.g., discover failures more efectively
and eiciently. On the other hand, we may need to consider whether the number of failures makes sense
because it is easy to increase the number by selecting more seed inputs. Like traditional software testing, we
may ind a lot of failed test cases, but we are more concerned with the unique root causes. A big challenge is
how to localize the root cause of these failures in DL testing. Some failures discovered from diferent seeds
may have the same root cause. We need another meaningful metric such as the number of unique root causes
of failures, not just the number of failures.

• Decrease of the number of failures generated by TensorFuzz-NC on Fashion-MNIST. In Figure 4.b, we ind that
the number of failures generated by TensorFuzz-NC decreases with the increase of the number of seeds on
Fashion-MNIST. Our analysis indicates that the test selection strategy of TensorFuzz is limited in the Fashion-
MNIST task. Speciically, if a new test case improves the coverage, TensorFuzz will add it into the tail of the
test queue. At each fuzzing iteration, TensorFuzz selects test cases to mutate by constructing a reservoir that
contains one test randomly selected from the whole queue and the other 5 test cases picked from the end of
the queue. Then it randomly selects a seed from the reservoir for mutation. Compared to other datasets, we
observe that the coverage of TensorFuzz-NC on Fashion-MNIST reaches high NC faster. When the number

ACM Trans. Softw. Eng. Methodol.

26 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

0 1000 2000 3000 4000 5000
Number of Initial Seeds

40

45

50

55

60

65

70

75

Co
ve

ra
ge

(%
)

MNIST

Random-KMNC
DeepHunter-KMNC
TensorFuzz-KMNC
Random-NC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

40

45

50

55

60

Co
ve

ra
ge

(%
)

Fashion-MNIST

Random-KMNC
DeepHunter-KMNC
TensorFuzz-KMNC
Random-NC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

10

20

30

40

50

60

70

80

Co
ve

ra
ge

(%
)

CIFAR-10

Random-KMNC
DeepHunter-KMNC
TensorFuzz-KMNC
Random-NC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

0

10

20

30

40

50

60

Co
ve

ra
ge

(%
)

SVHN

Random-KMNC
DeepHunter-KMNC
TensorFuzz-KMNC
Random-NC
DeepHunter-NC
TensorFuzz-NC

(a) Coverage increasing by each technique with diferent number of initial seeds on four datasets

0 1000 2000 3000 4000 5000
Number of Initial Seeds

0

1000

2000

3000

4000

5000

6000

Un
iq

ue
 E

rro
rs

MNIST
Random
DeepHunter-KMNC
TensorFuzz-KMNC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

2500

5000

7500

10000

12500

15000

17500

Un
iq

ue
 E

rro
rs

Fashion-MNIST

Random
DeepHunter-KMNC
TensorFuzz-KMNC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

2500

5000

7500

10000

12500

15000

17500

Un
iq

ue
 E

rro
rs

CIFAR-10

Random
DeepHunter-KMNC
TensorFuzz-KMNC
DeepHunter-NC
TensorFuzz-NC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

1000

2000

3000

4000

5000

6000

7000

8000

Un
iq

ue
 E

rro
rs

SVHN
Random
DeepHunter-KMNC
TensorFuzz-KMNC
DeepHunter-NC
TensorFuzz-NC

(b) Number of failures increasing by each technique with diferent number of initial seeds on four datasets

Fig. 4. Results of coverage and the number of failures from each testing tool with diferent number of initial seeds.

of initial seeds is larger, the initial coverage will be higher, and there will be fewer new test cases that can
increase the coverage. Therefore, fewer test cases can be added at the end, and the number of optional test
cases for mutation will reduce, which will afect the number of failures generated.

• The variation of strategy efectiveness with the size of the seed set. We have observed in Figure 4 that the testing
performance can be afected by the size of the randomly selected seed inputs, then the size of the selected seed
inputs can also afect the testing performance. For the relationship between the two, our intuition is that with
larger seed sizes, the diference in testing performance between our strategy and random selection should be
smaller. To verify this hypothesis, we use CGS-KMNC and PCS-low to select additional 1000, 2000, 3000, and
5000 seeds on MNIST and CIFAR for testing. Under the same number of seeds, the diferences between the
results of optimized seeds and the results of randomly selected seeds are plotted and displayed in Figure 5.
We can observe that after reaching a certain number, as the number of seeds increases, the gap between our
strategy and random selection becomes smaller and smaller (except for TF-NC, from Figure 4, we can ind that
the failures detected by TF-NC are not related to the seed size). Considering that we cannot test too many
inputs with limited computation and time resources, this result demonstrates the efectiveness and eiciency
of our strategies in selecting a limited number of seeds.

• Designing seed selection strategy for robustness improvement. As a data-driven software, improving robustness is
one of the important testing goals for DL systems. However, our indings show that the state-of-the-art metrics
(e.g., FOSC, DeepGini) do not perform well in the seed selection in terms of robustness improvement because
improving robustness is a really complex task. However, the MOO-based selection shows some promising
results that reveal the potential of combining multiple information (e.g., coverage, uncertainty, and gradient) to
design a better metric.

5.2 Threats to Validity

External Validity: The choice of datasets and DNN models are the threats to our results. To mitigate this threat,
we use four well-studied datasets and select popular pre-trained DNN models with excellent prediction accuracy

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 27

0 1000 2000 3000 4000 5000
Number of Initial Seeds

3

4

5

6

7

8

9

10

Co
ve

ra
ge

(%
)

Difference between CGS-KMNC and Random selection

RT-KMNC
DH-KMNC
TF-KMNC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f F
ai

lu
re

s

Difference between PCS-low and Random selection

RT
DH-KMNC
TF-KMNC
DH-NC
TF-NC

(a) MNIST

0 1000 2000 3000 4000 5000
Number of Initial Seeds

4

6

8

10

12

Co
ve

ra
ge

(%
)

Difference between CGS-KMNC and Random selection

RT-KMNC
DH-KMNC
TF-KMNC

0 1000 2000 3000 4000 5000
Number of Initial Seeds

5000

0

5000

10000

15000

Nu
m

be
r o

f F
ai

lu
re

s

Difference between PCS-low and Random selection

RT
DH-KMNC
TF-KMNC
DH-NC
TF-NC

(b) CIFAR-10

Fig. 5. The variation of strategy efectiveness with the size of the seed set.

on the training dataset. The datasets and models are widely used in the existing works. However, considering
the time consumption and the amount of our experiment, we just conduct the experiments on small and simple
image datasets such as MNIST, Fashion-MNIST, SVHN, and CIFAR-10. Some larger and complex datasets such as
CIFAR-100 or the ImageNet dataset are not evaluated, which may afect the generalisability of the results. We
plan to evaluate a wider range of DL models and datasets in the future. Another threat is that some coverage
criteria such as Input Distribution Coverage [16] are not evaluated, we plan to evaluate more coverage criteria in
the future.
Internal Validity: DL Testing is diferent from traditional software testing, it is diicult to deine the failure of a
DNN or to attribute a failure to any one cause. We mutated the inputs at the pixel level to ind test cases that make
mispredictions on the model. The validity of the generated test cases may be a threat. We can not guarantee that
the generated test cases are recognizable to the human eyes, nor can we determine whether the generated test
cases belong to diferent failure types or are generated for diferent root causes. And we distinguish failures by
comparing the hash of two images, which could be a threat. This is mainly relected in two aspects: the irst one
is collisions where diferent images may be reported as the same. The second one is sensitivity, as any changes
to the image may result in diferent hashes. This may allow failure-inducing images modiied by one or a few
"irrelevant" pixels to be reported as diferent failures, thereby inlating the evaluation results.
Construct Validity: The coverage criteria used in our study (NC, KMNC, and LSC) could be a threat. We chose
widely-used metrics to measure the diversity of inputs for the image classiication task, however, whether the
values of neuron outputs can represent the diversity of an input exactly is still a problem worth discussing.

To measure the uncertainty, we use the probability diference between the two highest softmax outputs (i.e.,
PCS) and the relative novelty of a given input with respect to the training inputs (i.e., LSA). They have been
proven to be related to uncertainty. They rely on the probability values of the layer output.
For the robustness improvement, most of the existing work on evaluating robustness relects robustness by

constructing a test set composed of mutants generated by mutation operators or adversarial examples generated
by adversarial attacks, and calculating the accuracy of the retrained model on the test set, we also use this
approach to evaluate model robustness. Using this method to evaluate robustness may be a threat to our results
and it is also an important task worth discussing. During the process of retraining, we integrate the measurement
method proposed in [82] which is the state-of-the-art work of model robustness improvement. However, the
metric is not speciically designed for the selection of initial seeds. That may be a threat to our results. The
training process and the seed selection for the robustness goal are still open problems.

ACM Trans. Softw. Eng. Methodol.

28 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

Conclusion Validity: There is some randomness during the testing process, which could be a threat. To mitigate
this threat, we repeated multiple times for each coniguration and averaged the results. In addition, we also ran
statistical tests (i.e., p-value and efect size) to assess the signiicance of our results.

6 RELATED WORK

DL testing. Deep learning testing has been widely studied. DeepXplore [62] proposes the irst white-box
testing technique guided by coverage metric NC. After that, DeepGauge [49] extends NC and proposes a set of
more ine-grained coverage metric including KMNC. Inspired by these works, many DL testing works focus on
designing coverage metrics, such as DeepCover [75], DeepCT [48], DeepMutation [50], DeepPath [79], Surprise
Coverage [40] and coverage at the layer-level [68]. Based on these metrics, there are some testing techniques
designed to generate test cases aimed to increase the coverage, which are called CGT techniques [17, 77].

In this paper, we select three exsiting testing techniques. Speciically, TensorFuzz [59] designed the approximate
nearest neighbors algorithms to calculate coverage. DeepHunter [88] proposed some seed sampling strategies
and integrated the coverage criteria from DeepGauge [49]. DLFuzz [31] is the irst diferential fuzzing testing
framework, which mutates the input to maximize the neuron coverage and the prediction diference between
the original input and the mutated input at the same time. DeepJanus [66] characterizes the frontier of DNN
misbehaviours by identifying pairs of inputs that are close to each other, with one input leading to a correct DNN
output and the other to a DNN failure. SINVAD [39] is a search-based input space navigation, it uses Variational
AutoencoDers (VAEs) to construct a plausible input space that resembles the true training distribution. SINVAD
navigates in the space and inds it is a valid way of searching for images that meet desiderata while remaining
plausible. DeepHyperion [95] deines speciic feature space for DL systems and resorts to Illumination Search to
ind the highest performing test cases through the map cells which represent the feature space. [19] leverages
generative machine learning to generate fresh test inputs that vary in high-level features (e.g., object shape,
location, texture, and color). They can detect failures that other existing methods cannot. DeepHyperion-CS [96]
enhances DeepHyperion by promoting the inputs that contributed more to feature space exploration during the
previous search iterations. We notice that there are extensive DL testing works that focus on designing coverage
metrics or test case generation algorithms [86, 89, 93] to detect the vulnerabilities of DL systems. To the best of
our knowledge, there is little work evaluating the impact of selecting diferent seed inputs.
Seed selection in search-based software testing. Search-based techniques have been shown to be a promising
approach to tackle software testing tasks [33, 54], for example in the case of test case generation for object-oriented
software [78]. Since the outcome of test cases has to be manually veriied in most cases, the test suite needs to be
small enough for software engineers to control within a feasible time [24]. Seed selection is one such factor that
may strongly inluence eiciency, thus some seed selection techniques for search-based software testing have
been studied.

The most common case of seed selection in the context of search-based software testing regards the case when
testing targets (e.g., branches to cover) are sought one at a time [85]. The control dependency graph can be used
to choose the order in which to ind targets, so when we try to cover a dependent target, we can reuse input data
from previous runs. McMinn et al. [56] proposed obtaining seed values from source code and documentation in
order to reduce the cost of manual oracle. Fraser and Zeller [25] use common objects for seeding in search to
reduce manual oracle costs and improve the readability of generated test cases. Miraz et al. [57] create the initial
seed set by selecting the best individuals from a larger seed pool which contains randomly generated individuals.
When the code of the SUT is analyzed, Alshraideh and Bottaci [6] proposed a seed selection technique that extracts
string constants to use as a starting point for the generation of string inputs, McMinn et al. [55] investigated a
strategy that extracts candidates input strings from web queries on search engines based on SUT information.
Alshahwan and Harman [5] proposed Dynamically Mined Value strategy for testing web applications, that is, the

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 29

HTML pages generated as the output of the test cases are then used as the source of string input for the new test
cases in the search.
Seed selection in traditional fuzzing. Fuzzing is a popular technique for inding bugs in traditional software.
The most important goal of fuzzing is generating test cases that cause the program crash. There are two
kinds of fuzzers that difer in the way they generate test cases: generation-based (e.g., QuickFuzz [30] and
CodeAlchemist [32]) and mutation-based (e.g., AFL [91], libFuzzer [69] and honggfuzz [76]).
In traditional fuzzing, seed input collection comes in diferent ways, e.g., some unreported seeds [36], some

manually-constructed seeds [7] and randomly selected seeds [37, 47, 81, 83]. Empty seed is also a popular strategy
used for fuzzing [9, 10]. Recently, to improve the fuzzing eiciency, many works start to evaluate the impact of
diferent seed selection strategies, where one of the most efective technique is corpus minimization (sometimes
called distillation). For instance, [73] irst formalized this problem as Minimum Set Cover Problem (MSCP) and
used a greedy algorithm to solve it. [64] proposed six corpus minimization techniques and found Unweighted

Minset perform best. al-cmin [91] may be the most popular corpus minimization tool that uses AFL’s own
notion of edge coverage to minimize seed inputs. OptiMin [35] optimizes the corpus minimization by encoding
the problem as a maximum satisiability problem (MaxSAT).
Motivated by these works, we study the impact of diferent seed selection strategies with regard to diferent

testing goals on DL testing. Due to the fundamental diferences between traditional software and DL models, we
found that the selection strategies in DL testing are diferent from traditional software testing (e.g., empty seed is
not good in DL testing).
Seed sampling and test selection. Seed sampling is to select a seed from the seed queue during each iteration of
fuzzing. The seed is selected to generate new mutants. There are three popular seed sampling strategies: random
sampling [59] that randomly selects a seed from the queue, recency-aware seed sampling [59, 77] that prefers
to sample seed at the tail of the queue, and frequency-aware seed sampling that sample the seed based on the
number of times that the seed was selected. The seed sampling is a diferent problem with the seed selection in
this work.

In order to improve the model robustness, many test selection strategies [22, 40, 45, 82, 84] are also proposed
to prioritize the test cases. Without loss of generality, these metrics can be considered as our testing objectives
(similar with coverage, PCS). In this work, we select KMNC [49], NC [62], PCS [94], LSA [40], and FOSC [82] to
measure the potential of improving coverage, failure detection and robustness. In future work, we plan to add
more test selection metrics in our MOO-based selection strategy, which can potentially achieve better testing
performance.

7 CONCLUSION

In this paper, we conduct the irst study on the impact of seed selection strategies for DL testing. We suppose that
seed selection is an important step before DL testing. Our results provide ample evidence for this supposition and
demonstrate that testing performance is afected by the initial seed selection. We propose three SOO-based seed
selection strategies that can improve testing performance for diferent goals. We also propose two MOO-based
seed selection strategies that can lead to good performance on multiple goals. This study makes the irst step
along this direction towards considering the importance of seed selection on DL testing. We hope our work draws
the attention of researchers working on DL testing, altogether to facilitate further studies on constructing safe
and reliable DL systems.

REFERENCES

[1] 2022. Seed Selection. https://sites.google.com/view/seedselection

[2] Humberto Abdelnur, Obes Jorge Lucangeli, Olivier Festor, et al. 2010. Spectral Fuzzing: Evaluation & Feedback. Ph. D. Dissertation.

INRIA.

ACM Trans. Softw. Eng. Methodol.

https://sites.google.com/view/seedselection

30 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

[3] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2018. Testing autonomous cars for feature

interaction failures using many-objective search. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. 143ś154.

[4] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith Whittaker. 2016. Announcing OSS-Fuzz: Continuous

fuzzing for open source software. Google Testing Blog (2016).

[5] Nadia Alshahwan and Mark Harman. 2011. Automated web application testing using search based software engineering. In 2011 26th

IEEE/ACM International Conference on Automated Software Engineering (ASE 2011). IEEE, 3ś12.

[6] Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test data generation for string data using program-speciic

search operators. Software Testing, Veriication and Reliability 16, 3 (2006), 175ś203.

[7] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and Thorsten Holz. 2019. REDQUEEN: Fuzzingwith Input-to-State

Correspondence.. In NDSS, Vol. 19. 1ś15.

[8] Chunteng Bao, Lihong Xu, Erik D Goodman, and Leilei Cao. 2017. A novel non-dominated sorting algorithm for evolutionary

multi-objective optimization. Journal of Computational Science 23 (2017), 31ś43.

[9] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the exponential cost of vulnerability discovery. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 713ś724.

[10] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. 2020. Boosting fuzzer eiciency: An information theoretic perspective. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 678ś689.

[11] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security

and privacy (sp). IEEE, 39ś57.

[12] Oliver Chang, Abhishek Arya, Kostya Serebryany, and Josh Armour. 2017. OSS-Fuzz: Five months later, and rewarding projects.

[13] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column deep neural networks for image classiication. In 2012 IEEE

conference on computer vision and pattern recognition. IEEE, 3642ś3649.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing

(almost) from scratch. Journal of machine learning research 12, ARTICLE (2011), 2493ś2537.

[15] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000. A fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature. Springer, 849ś858.

[16] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Sofa. 2022. Input Distribution Coverage: Measuring Feature Interaction Adequacy in

Neural Network Testing. ACM Transactions on Software Engineering and Methodology (2022).

[17] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-based quantitative analysis of stateful

deep learning systems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. 477ś487.

[18] Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A Kai Qin, and Yun Yang. 2020. Adversarial camoulage: Hiding physical-world

attacks with natural styles. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 1000ś1008.

[19] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing previously undetectable faults in deep neural networks.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 56ś66.

[20] Hazem Fahmy, Fabrizio Pastore, Lionel Briand, and Thomas Stifter. 2022. Simulator-based explanation and debugging of hazard-triggering

events in DNN-based safety-critical systems. ACM Transactions on Software Engineering and Methodology (2022).

[21] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017. Detecting adversarial samples from artifacts. arXiv

preprint arXiv:1703.00410 (2017).

[22] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. Deepgini: prioritizing massive tests to enhance

the robustness of deep neural networks. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis. 177ś188.

[23] Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L Beam, and Isaac S Kohane. 2019. Adversarial attacks on

medical machine learning. Science 363, 6433 (2019), 1287ś1289.

[24] Gordon Fraser and Andrea Arcuri. 2012. The seed is strong: Seeding strategies in search-based software testing. In 2012 IEEE ifth

international conference on software testing, veriication and validation. IEEE, 121ś130.

[25] Gordon Fraser and Andreas Zeller. 2011. Exploiting common object usage in test case generation. In 2011 Fourth IEEE International

Conference on Software Testing, Veriication and Validation. IEEE, 80ś89.

[26] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In

international conference on machine learning. PMLR, 1050ś1059.

[27] Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu. 2022. Adaptive test selection for deep neural networks. In

Proceedings of the 44th International Conference on Software Engineering. 73ś85.

[28] Xiang Gao, Ripon K Saha, Mukul R Prasad, and Abhik Roychoudhury. 2020. Fuzz testing based data augmentation to improve robustness

of deep neural networks. In Proceedings of the acm/ieee 42nd international conference on software engineering. 1147ś1158.

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 31

[29] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572 (2014).

[30] Gustavo Grieco, Martín Ceresa, Agustín Mista, and Pablo Buiras. 2017. QuickFuzz testing for fun and proit. Journal of Systems and

Software 134 (2017), 340ś354.

[31] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Diferential fuzzing testing of deep learning systems.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 739ś743.

[32] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in

JavaScript Engines.. In NDSS.

[33] Mark Harman and Bryan F Jones. 2001. Search-based software engineering. Information and software Technology 43, 14 (2001), 833ś839.

[34] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness to common corruptions and perturbations.

arXiv preprint arXiv:1903.12261 (2019).

[35] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L Hosking. 2021. Seed selection for

successful fuzzing. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 230ś243.

[36] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020. {FuzzGen}: Automatic Fuzzer Generation. In 29th USENIX

Security Symposium (USENIX Security 20). 2271ś2287.

[37] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. 2020. {FuZZan}: Eicient Sanitizer Metadata Design for Fuzzing. In

2020 USENIX Annual Technical Conference (USENIX ATC 20). 249ś263.

[38] Linxi Jiang, Xingjun Ma, Shaoxiang Chen, James Bailey, and Yu-Gang Jiang. 2019. Black-box adversarial attacks on video recognition

models. In Proceedings of the 27th ACM International Conference on Multimedia. 864ś872.

[39] Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. Sinvad: Search-based image space navigation for dnn image classiier test input

generation. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. 521ś528.

[40] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 1039ś1049.

[41] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 2123ś2138.

[42] Yann LeCun, Yoshua Bengio, and Geofrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436ś444.

[43] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Efective white-box testing of deep neural networks with adaptive

neuron-selection strategy. In ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.

[44] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan

Pratt, et al. 2011. Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE intelligent vehicles symposium (IV). IEEE,

163ś168.

[45] Zixi Liu, Yang Feng, Yining Yin, and Zhenyu Chen. 2022. DeepState: selecting test suites to enhance the robustness of recurrent neural

networks. In Proceedings of the 44th International Conference on Software Engineering. 598ś609.

[46] Qiang Long, Xue Wu, and Changzhi Wu. 2021. Non-dominated sorting methods for multi-objective optimization: review and numerical

comparison. Journal of Industrial & Management Optimization 17, 2 (2021), 1001.

[47] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Raheem Beyah. 2019. {MOPT}: Optimized mutation

scheduling for fuzzers. In 28th USENIX Security Symposium (USENIX Security 19). 1949ś1966.

[48] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. Deepct: Tomographic combinatorial testing for deep

learning systems. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 614ś618.

[49] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge:

Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. 120ś131.

[50] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation:

Mutation testing of deep learning systems. In 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). IEEE,

100ś111.

[51] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, and James

Bailey. 2018. Characterizing adversarial subspaces using local intrinsic dimensionality. arXiv preprint arXiv:1801.02613 (2018).

[52] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, and Feng Lu. 2021. Understanding adversarial attacks on deep

learning based medical image analysis systems. Pattern Recognition 110 (2021), 107332.

[53] Amit Mandelbaum and Daphna Weinshall. 2017. Distance-based conidence score for neural network classiiers. arXiv preprint

arXiv:1709.09844 (2017).

[54] Phil McMinn. 2004. Search-based software test data generation: a survey. Software testing, Veriication and reliability 14, 2 (2004),

105ś156.

ACM Trans. Softw. Eng. Methodol.

32 • Yuhan Zhi, Xiaofei Xie, Chao Shen, Jun Sun, Xiaoyu Zhang, and Xiaohong Guan

[55] Phil McMinn, Muzammil Shahbaz, and Mark Stevenson. 2012. Search-based test input generation for string data types using the results

of web queries. In 2012 IEEE Fifth International Conference on Software Testing, Veriication and Validation. IEEE, 141ś150.

[56] Phil McMinn, Mark Stevenson, and Mark Harman. 2010. Reducing qualitative human oracle costs associated with automatically

generated test data. In Proceedings of the First International Workshop on Software Test Output Validation. 1ś4.

[57] Matteo Miraz, Pier Luca Lanzi, and Luciano Baresi. 2010. Improving evolutionary testing by means of eiciency enhancement techniques.

In IEEE congress on evolutionary computation. IEEE, 1ś8.

[58] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,

Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. nature 518, 7540 (2015),

529ś533.

[59] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019. Tensorfuzz: Debugging neural networks with coverage-

guided fuzzing. In International Conference on Machine Learning. PMLR, 4901ś4911.

[60] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. {MoonShine}: Optimizing {OS} Fuzzer Seed Selection with Trace Distillation.

In 27th USENIX Security Symposium (USENIX Security 18). 729ś743.

[61] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face recognition. (2015).

[62] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In

proceedings of the 26th Symposium on Operating Systems Principles. 1ś18.

[63] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and Lawrence Carin. 2016. Variational autoencoder for

deep learning of images, labels and captions. Advances in neural information processing systems 29 (2016).

[64] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David Warren, Gustavo Grieco, and David Brumley. 2014.

Optimizing seed selection for fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14). 861ś875.

[65] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. Deepmetis: Augmenting a deep learning test set to

increase its mutation score. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 355ś367.

[66] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning system testing. In

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 876ś888.

[67] Florian Schrof, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A uniied embedding for face recognition and clustering. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 815ś823.

[68] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep learning. In 2019 IEEE/ACM 41st International Conference

on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 85ś88.

[69] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer. In 2016 IEEE Cybersecurity Development (SecDev). IEEE,

157ś157.

[70] Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and Baowen Xu. 2020. Multiple-boundary clustering and prioritization

to promote neural network retraining. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.

410ś422.

[71] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew

Lai, Adrian Bolton, et al. 2017. Mastering the game of go without human knowledge. nature 550, 7676 (2017), 354ś359.

[72] Lewis Smith and Yarin Gal. 2018. Understandingmeasures of uncertainty for adversarial example detection. arXiv preprint arXiv:1803.08533

(2018).

[73] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, and Rob Ashmore. 2019. Structural Test Coverage Criteria for Deep

Neural Networks. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[74] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob Ashmore. 2019. Deepconcolic: testing and

debugging deep neural networks. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion). IEEE, 111ś114.

[75] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic testing for deep neural

networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 109ś119.

[76] Robert Swiecki. 2016. Honggfuzz. Available online at: http://code. google.com/p/honggfuzz (2016).

[77] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-driven autonomous

cars. In Proceedings of the 40th international conference on software engineering. 303ś314.

[78] Paolo Tonella. 2004. Evolutionary testing of classes. ACM SIGSOFT Software Engineering Notes 29, 4 (2004), 119ś128.

[79] Dong Wang, Ziyuan Wang, Chunrong Fang, Yanshan Chen, and Zhenyu Chen. 2019. DeepPath: Path-driven testing criteria for deep

neural networks. In 2019 IEEE International Conference On Artiicial Intelligence Testing (AITest). IEEE, 119ś120.

[80] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyire: Data-driven seed generation for fuzzing. In 2017 IEEE Symposium on

Security and Privacy (SP). IEEE, 579ś594.

[81] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-aware greybox fuzzing. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 724ś735.

ACM Trans. Softw. Eng. Methodol.

Seed Selection for Testing Deep Neural Networks • 33

[82] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and Peng Cheng. 2021. Robot: robustness-oriented

testing for deep learning systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 300ś311.

[83] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tifany Bao, Dinghao Wu, and Purui Su. 2020. Not All Coverage Measurements Are

Equal: Fuzzing by Coverage Accounting for Input Prioritization.. In NDSS.

[84] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin Zhang. 2021. Prioritizing test inputs for deep neural

networks via mutation analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 397ś409.

[85] JoachimWegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary test environment for automatic structural testing. Information

and software technology 43, 14 (2001), 841ś854.

[86] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided black-box safety testing of deep neural networks. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 408ś426.

[87] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. 2020. Skip connections matter: On the transferability of

adversarial examples generated with resnets. arXiv preprint arXiv:2002.05990 (2020).

[88] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, and Simon See. 2018.

Deephunter: Hunting deep neural network defects via coverage-guided fuzzing. arXiv preprint arXiv:1809.01266 (2018).

[89] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019. DifChaser: Detecting Disagreements for Deep Neural

Networks.. In IJCAI. 5772ś5778.

[90] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. 2020. Correlations between deep neural

network model coverage criteria and model quality. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 775ś787.

[91] Michal Zalewski. 2015. American fuzzy lop (2017). URL http://lcamtuf. coredump. cx/al 14 (2015), 28.

[92] Hugo Zaragoza and Florence d’Alché Buc. 1998. Conidence measures for neural network classiiers. In Proceedings of the Seventh Int.

Conf. Information Processing and Management of Uncertainty in Knowlegde Based Systems, Vol. 9. Citeseer.

[93] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai. 2020. White-box fairness

testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 949ś960.

[94] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun Zhao, and Meng Sun. 2020. Towards characterizing

adversarial defects of deep learning software from the lens of uncertainty. In 2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE). IEEE, 739ś751.

[95] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2021. Deephyperion: exploring the feature space of deep

learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 79ś90.

[96] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. 2022. Eicient and efective feature space exploration for

testing deep learning systems. ACM Transactions on Software Engineering and Methodology (2022).

ACM Trans. Softw. Eng. Methodol.

	Seed selection for testing deep neural networks
	Citation
	Author

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-guided Testing
	2.2 DL Testing Evaluation
	2.3 Seed Selection for DL Testing

	3 Methodology
	3.1 Problem Definition and Overview
	3.2 Seed Selection

	4 Evaluation
	4.1 Experiment Settings
	4.2 RQ1: Results of SOO-based Selection
	4.3 RQ2: Results of MOO-based Selection
	4.4 RQ3: Transferability of Seed Selection

	5 Discussion and Threats to Validity
	5.1 Discussion
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	References

